ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В круг радиуса 1 помещено два треугольника, площадь каждого из которых больше 1. Докажите, что эти треугольники пересекаются.

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 57352

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 3
Классы: 9

Выпуклый многоугольник, площадь которого больше 0, 5, помещен в квадрат со стороной 1. Докажите, что внутри многоугольника можно поместить отрезок длины 0, 5, параллельный стороне квадрата.
Прислать комментарий     Решение


Задача 57353

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 4+
Классы: 9

Внутри квадрата со стороной 1 даны n точек. Докажите, что:
а) площадь одного из треугольников с вершинами в этих точках или вершинах квадрата не превосходит  1/(2(n + 1));
б) площадь одного из треугольников с вершинами в этих точках не превосходит 1/(n - 2).
Прислать комментарий     Решение


Задача 57354

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 5
Классы: 9

а) В круг площади S вписан правильный n-угольник площади S1, а около этого круга описан правильный n-угольник площади S2. Докажите, что  S2 > S1S2.
б) В окружность, длина которой равна L, вписан правильный n-угольник периметра P1, а около этой окружности описан правильный n-угольник периметра P2. Докажите, что  L2 < P1P2.
Прислать комментарий     Решение


Задача 57355

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 5
Классы: 9

Многоугольник площади B вписан в окружность площади A и описан вокруг окружности площади C. Докажите, что  2B $ \leq$ A + C.
Прислать комментарий     Решение


Задача 57356

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 5
Классы: 9

В круг радиуса 1 помещено два треугольника, площадь каждого из которых больше 1. Докажите, что эти треугольники пересекаются.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .