ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Выпуклый n-угольник помещен в квадрат со стороной 1. Докажите, что найдутся три такие вершины A, B и C этого n-угольника, что площадь треугольника ABC не превосходит: а) 8/n2; б) 16$ \pi$/n3.

   Решение

Задачи

Страница: << 1 2 3 [Всего задач: 12]      



Задача 57362

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 5+
Классы: 9

Докажите, что в любой выпуклый многоугольник площади 1 можно поместить треугольник, площадь которого не меньше: а) 1/4; б) 3/8.
Прислать комментарий     Решение


Задача 57363

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 6
Классы: 9

Выпуклый n-угольник помещен в квадрат со стороной 1. Докажите, что найдутся три такие вершины A, B и C этого n-угольника, что площадь треугольника ABC не превосходит: а) 8/n2; б) 16$ \pi$/n3.
Прислать комментарий     Решение


Страница: << 1 2 3 [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .