ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На сторонах выпуклого четырёхугольника как на диаметрах построены четыре круга. Докажите, что они покрывают весь четырёхугольник.

Вниз   Решение


В параллелограмм P1 вписан параллелограмм P2, а в параллелограмм P2 вписан параллелограмм P3, стороны которого параллельны сторонам P1. Докажите, что длина хотя бы одной из сторон P1 не превосходит удвоенной длины параллельной ей стороны P3.

Вверх   Решение

Задачи

Страница: << 1 2 3 [Всего задач: 12]      



Задача 57379

Темы:   [ Признаки и свойства параллелограмма ]
[ Четырехугольник (неравенства) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Неравенство Коши ]
[ Площадь параллелограмма ]
Сложность: 4+
Классы: 8,9,10

В параллелограмм P1 вписан параллелограмм P2, а в параллелограмм P2 вписан параллелограмм P3, стороны которого параллельны сторонам P1. Докажите, что длина хотя бы одной из сторон P1 не превосходит удвоенной длины параллельной ей стороны P3.

Прислать комментарий     Решение

Задача 57378

Тема:   [ Четырехугольник (неравенства) ]
Сложность: 5
Классы: 8,9

Отрезок KL проходит через точку пересечения диагоналей четырехугольника ABCD, а концы его лежат на сторонах AB и CD. Докажите, что длина отрезка KL не превосходит длины одной из диагоналей.
Прислать комментарий     Решение


Страница: << 1 2 3 [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .