ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано несколько параллельных отрезков, причем для любых трех из них найдется прямая, их пересекающая. Докажите, что найдется прямая, пересекающая все отрезки.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 58141  (#22.012)

Тема:   [ Теорема Хелли ]
Сложность: 6
Классы: 9,10

а) На плоскости даны четыре выпуклые фигуры, причем любые три из них имеют общую точку. Докажите, что тогда и все они имеют общую точку.
б) На плоскости дано n выпуклых фигур, причем любые три из них имеют общую точку. Докажите, что все n фигур имеют общую точку (теорема Хелли).
Прислать комментарий     Решение


Задача 58078  (#22.013)

Темы:   [ Принцип крайнего (прочее) ]
[ Теорема Хелли ]
Сложность: 5
Классы: 8,9,10

На плоскости дано n точек, причем любые три из них можно накрыть кругом радиуса 1. Докажите, что тогда все n точек можно накрыть кругом радиуса 1.
Прислать комментарий     Решение


Задача 58143  (#22.014B)

Тема:   [ Теорема Хелли ]
Сложность: 6+
Классы: 9,10

а) Дан выпуклый многоугольник. Известно, что для любых трёх его сторон можно выбрать точку O внутри многоугольника так, что перпендикуляры, опущенные из точки O на эти три стороны, попадают на сами стороны, а не на их продолжения. Докажите, что тогда такую точку O можно выбрать для всех сторон одновременно.
б) Докажите, что в случае выпуклого четырёхугольника такую точку O можно выбрать, если её можно выбрать для любых двух сторон.
Прислать комментарий     Решение


Задача 58144  (#22.014)

Тема:   [ Теорема Хелли ]
Сложность: 6+
Классы: 9,10

Докажите, что внутри любого выпуклого семиугольника есть точка, не принадлежащая ни одному из четырехугольников, образованных четверками его соседних вершин.
Прислать комментарий     Решение


Задача 58145  (#22.015)

Тема:   [ Теорема Хелли ]
Сложность: 6+
Классы: 9,10

Дано несколько параллельных отрезков, причем для любых трех из них найдется прямая, их пересекающая. Докажите, что найдется прямая, пересекающая все отрезки.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .