Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

а) Докажите, что любой многоугольник можно разрезать на части и сложить из них прямоугольник со стороной 1.
б) Даны два многоугольника равной площади. Докажите, что первый многоугольник можно разрезать на части и сложить из них второй.

Вниз   Решение


а) Докажите, что площадь четырехугольника, образованного серединами сторон выпуклого четырехугольника ABCD, равна половине площади ABCD.
б) Докажите, что если диагонали выпуклого четырехугольника равны, то его площадь равна произведению длин отрезков, соединяющих середины противоположных сторон.

ВверхВниз   Решение


Какое наибольшее количество непересекающихся диагоналей можно провести в выпуклом n-угольнике (допускаются диагонали, имеющие общую вершину)?

ВверхВниз   Решение


Пусть a и b – действительные числа. Определим показательную функцию на множестве комплексных чисел равенством     Докажите формулу Эйлера:   ea+ib = ea(cos b + i sin b).

ВверхВниз   Решение


На сторонах шестиугольника было записано шесть чисел, а в каждой вершине – число, равное сумме двух чисел на смежных с ней сторонах. Затем все числа на сторонах и одно число в вершине стерли. Можно ли восстановить число, стоявшее в вершине?

ВверхВниз   Решение


Выпуклый многоугольник разрезан на p треугольников так, что на их сторонах нет вершин других треугольников. Пусть n и m — количества вершин этих треугольников, лежащих на границе исходного многоугольника и внутри его.
а) Докажите, что p = n + 2m - 2.
б) Докажите, что количество отрезков, являющихся сторонами полученных треугольников, равно 2n + 3m - 3.

ВверхВниз   Решение


Автор: Фольклор

На окружности записаны шесть чисел: каждое равно модулю разности двух чисел, стоящих после него по часовой стрелке.
Сумма всех чисел равна 1. Найти эти числа.

ВверхВниз   Решение


В некотором выпуклом n-угольнике  (n > 3)  все расстояния между вершинами различны.
  а) Назовём вершину неинтересной, если самая близкая к ней вершина – соседняя с ней. Каково наименьшее возможное количество неинтересных вершин (при данном n)?
  б) Назовём вершину необычной, если самая дальняя от неё вершина – соседняя с ней. Каково наибольшее возможное количество необычных вершин (при данном n)?

ВверхВниз   Решение


Может ли некоторое сечение куба быть правильным пятиугольником?

ВверхВниз   Решение


Докажите неравенство для положительных значений переменных:  

ВверхВниз   Решение


Докажите, что выпуклый многоугольник нельзя разрезать на конечное число невыпуклых четырехугольников.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 10]      



Задача 58175  (#23.015B)

Темы:   [ Эйлерова характеристика ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 5+
Классы: 8,9,10,11

Выпуклый многоугольник разрезан на p треугольников так, что на их сторонах нет вершин других треугольников. Пусть n и m — количества вершин этих треугольников, лежащих на границе исходного многоугольника и внутри его.
а) Докажите, что p = n + 2m - 2.
б) Докажите, что количество отрезков, являющихся сторонами полученных треугольников, равно 2n + 3m - 3.
Прислать комментарий     Решение


Задача 79493  (#23.016)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Полуинварианты ]
Сложность: 4+
Классы: 9,10

Квадратное поле разбито на 100 одинаковых участков, 9 из которых поросли бурьяном. Известно, что бурьян за год распространяется на те и только те участки, у каждого из которых не менее двух соседних участков уже поражены бурьяном (участки соседние, если они имеют общую сторону). Докажите, что полностью все поле бурьяном не зарастёт.
Прислать комментарий     Решение


Задача 58177  (#23.017)

Тема:   [ Инварианты ]
Сложность: 7
Классы: 8,9

Докажите, что существуют равновеликие многоугольники, которые нельзя разбить на многоугольники (возможно, невыпуклые), переводящиеся друг в друга параллельным переносом.
Прислать комментарий     Решение


Задача 58178  (#23.018)

Тема:   [ Инварианты ]
Сложность: 7
Классы: 8,9

Докажите, что выпуклый многоугольник нельзя разрезать на конечное число невыпуклых четырехугольников.
Прислать комментарий     Решение


Задача 58179  (#23.019)

Тема:   [ Инварианты ]
Сложность: 7
Классы: 8,9

Даны точки A1,..., An. Рассмотрим окружность радиуса R, содержащую некоторые из них. Построим затем окружность радиуса R с центром в центре масс точек, лежащих внутри первой окружности, и т. д. Докажите, что этот процесс остановится, т. е. окружности начнут совпадать.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .