ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Докажите, что любая прямая, делящая пополам площадь и периметр треугольника, проходит через центр вписанной окружности. Из точки P опущены перпендикуляры PA1, PB1
и PC1 на стороны треугольника ABC. Прямая la соединяет
середины отрезков PA и B1C1. Аналогично определяются
прямые lb и lc. Докажите, что эти прямые пересекаются в одной
точке.
Существует ли замкнутая ломаная с нечетным числом звеньев равной
длины, все вершины которой лежат в узлах целочисленной решетки?
|
Страница: 1 2 >> [Всего задач: 6]
Существует ли правильный треугольник с вершинами в узлах целочисленной
решетки?
Докажите, что при n ≠ 4 правильный n-угольник
нельзя расположить так, чтобы его вершины оказались
в узлах целочисленной решетки.
Можно ли прямоугольный треугольник с целыми
сторонами расположить так, чтобы его вершины лежали
в узлах целочисленной решетки, но ни одна из его сторон
не проходила по линиям решетки?
Существует ли замкнутая ломаная с нечетным числом звеньев равной
длины, все вершины которой лежат в узлах целочисленной решетки?
На клетчатой бумаге выбраны три точки A, B, C, находящиеся в вершинах
клеток. Докажите, что если треугольник ABC остроугольный, то внутри или
на сторонах его есть по крайней мере еще одна вершина клетки.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке