ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Серёжа выбрал два различных натуральных числа a и b. Он записал в тетрадь четыре числа:  a,  a + 2,  b и  b + 2.  Затем он выписал на доску все шесть попарных произведений чисел из тетради. Какое наибольшее количество точных квадратов может быть среди чисел на доске?

Вниз   Решение


Докажите, что середины параллельных хорд параболы лежат на одной прямой, параллельной оси параболы.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 58496  (#31.029)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что с помощью гомотетии с центром (0, 0) параболу 2py = x2 можно перевести в параболу y = x2.
Прислать комментарий     Решение


Задача 58497  (#31.030)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Окружность пересекает параболу в четырех точках. Докажите, что центр масс этих точек лежит на оси параболы.
Прислать комментарий     Решение


Задача 58498  (#31.031)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Две параболы, оси которых перпендикулярны, пересекаются в четырех точках. Докажите, что эти точки лежат на одной окружности.
Прислать комментарий     Решение


Задача 58499  (#31.032)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что середины параллельных хорд параболы лежат на одной прямой, параллельной оси параболы.
Прислать комментарий     Решение


Задача 58500  (#31.033)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

а) Докажите, что расстояния от любой точки параболы до фокуса и до директрисы равны.
б) Докажите, что множество точек, для которых расстояния до некоторой фиксированной точки и до некоторой фиксированной прямой равны, является параболой.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .