ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Внутри остроугольного неравнобедренного треугольника $ABC$ отмечена точка $T$, такая что $\angle ATB = \angle BTC = 120^\circ$. Окружность с центром $E$ проходит через середины сторон треугольника $ABC$. Оказалось, что точки $B,T,E$ лежат на одной прямой. Найдите угол $ABC$. В треугольнике $ABC$ $(\angle C=90^{\circ})$, $CH$ – высота; $HA_{1}, HB_{1}$ – биссектрисы углов $\angle CHB, \angle AHC$ соответственно; $E, F$ – середины отрезков $HB_{1}$ и $HA_{1}$ соответственно. Докажите, что прямые $AE$ и $BF$ пересекаются на биссектрисе угла $ACB$. Сформулируйте и докажите признаки делимости на числа 2, 4, 8, 5 и 25. |
Страница: 1 2 3 4 5 6 >> [Всего задач: 30]
Число N записано в десятичной системе счисления N =
Сформулируйте и докажите признаки делимости на числа 2, 4, 8, 5 и 25.
Найдите все числа вида xy9z, которые делятся на 132.
Найдите все числа вида 13xy45z, которые делятяс на 792.
Рассмотрим число N, записанное в десятичной системе счисления. Найдём сумму цифр этого числа, потом сложим цифры, которыми записана сумма и т.д. Будем продолжать этот процесс, пока в конце концов не получим однозначное число, которое называют цифровым корнем числа N. Докажите, что цифровой корень сравним с N по модулю 9.
Страница: 1 2 3 4 5 6 >> [Всего задач: 30]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке