ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На плоскости нарисовано 12 прямых, проходящих через точку О. Докажите, что можно выбрать две из них так, что угол между ними будет меньше 17 градусов.

Вниз   Решение


Дан произвольный центрально-симметричный шестиугольник. На его сторонах, как на основаниях, построены во внешнюю сторону правильные треугольники. Доказать, что середины отрезков, соединяющих вершины соседних треугольников, образуют правильный шестиугольник.

ВверхВниз   Решение


Рассмотрим число N, записанное в десятичной системе счисления. Найдём сумму цифр этого числа, потом сложим цифры, которыми записана сумма и т.д. Будем продолжать этот процесс, пока в конце концов не получим однозначное число, которое называют цифровым корнем числа N. Докажите, что цифровой корень сравним с N по модулю 9.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 60789  (#04.163)

 [Признаки делимости на 3, 9 и 11]
Тема:   [ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 7,8,9

Число N записано в десятичной системе счисления  N = .  Докажите следующие признаки делимости:
  а) N делится на 3  ⇔  an + an–1 + ... + a1 + a0 делится на 3;
  б) N делится на 9  ⇔  an + an–1 + ... + a1 + a0 делится на 9;
  в) N делится на 11  ⇔  (–1)nan + (–1)n–1an–1 + ... + a1 + a0 делится на 11.

Прислать комментарий     Решение

Задача 60791  (#04.165)

 [Признаки делимости на 2.4, 8, 5 и 25]
Тема:   [ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 7,8,9

Сформулируйте и докажите признаки делимости на числа 2, 4, 8, 5 и 25.

Прислать комментарий     Решение

Задача 60792  (#04.166)

Темы:   [ Признаки делимости (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

Найдите все числа вида  xy9z,  которые делятся на 132.

Прислать комментарий     Решение

Задача 60793  (#04.167)

Темы:   [ Признаки делимости (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

Найдите все числа вида 13xy45z,  которые делятяс на 792.

Прислать комментарий     Решение

Задача 60794  (#04.168)

 [Цифровой корень числа]
Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 7,8,9

Рассмотрим число N, записанное в десятичной системе счисления. Найдём сумму цифр этого числа, потом сложим цифры, которыми записана сумма и т.д. Будем продолжать этот процесс, пока в конце концов не получим однозначное число, которое называют цифровым корнем числа N. Докажите, что цифровой корень сравним с N по модулю 9.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .