ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Можно ли нарисовать правильный треугольник с вершинами в
узлах квадратной сетки?
Двое игроков играют в карточную игру. У них есть колода из n попарно различных карт. Про любые две карты из колоды известно, какая из них бьёт другую (при этом, если A бьёт B, а B бьёт C, то может оказаться, что C бьёт A). Колода распределена между игроками произвольным образом. На каждом ходу игроки открывают по верхней карте из своих колод, и тот, чья карта бьёт карту другого игрока, берёт обе карты и кладёт их в самый низ своей колоды в произвольном порядке по своему усмотрению. Докажите, что при любой исходной раздаче игроки могут, зная расположение карт, договориться и действовать так, чтобы один из игроков остался без карт. На сторонах AB, BC, CA треугольника ABC взяты
такие точки A1 и B2, B1 и C2, C1 и A2, что
отрезки A1A2, B1B2 и C1C2 параллельны сторонам
треугольника и пересекаются в точке P. Докажите, что
PA1 . PA2 + PB1 . PB2 + PC1 . PC2 = R2 - OP2, где O — центр
описанной окружности.
Пусть l (n) — наименьшее число умножений,
необходимое для нахождения xn. На примере чисел n = 15 и
n = 63 покажите, что бинарный метод возведения в степень (смотри задачу
5.64) не
всегда оптимален, то есть для некоторых n выполняется
неравенство l (n) < b(n).
|
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
а) Имеются две веревки. Если любую из них
поджечь с одного конца, то она сгорит за час. Веревки горят
неравномерно. Например, нельзя гарантировать, что половина
веревки сгорает за 30 минут. Как, имея две такие веревки,
отмерить промежуток времени в 15 минут?
а) У одного человека был подвал, освещавшийся
тремя электрическими лампочками. Выключатели этих лампочек
находились вне подвала, так что включив любой из выключателей,
хозяин должен был спуститься в подвал, чтобы увидеть, какая
именно лампочка зажглась. Однажды он придумал способ, как
определить для каждого выключателя, какую именно лампочку он
включает, сходив в подвал ровно один раз. Какой это способ?
С числом разрешается производить две
операции: ``увеличить в два раза'' и ``увеличить на
1''. За какое наименьшее число операций можно из числа 0
получить
Бинарный метод возведения в степень. Предположим, что необходимо возвести число x в степень n. Если, например, n = 16, то это можно сделать выполнив 15 умножений x16 = x . x . ... . x, а можно обойтись лишь четырьмя:
x1 = x . x = x2, x2 = x1 . x1 = x4, x3 = x2 . x2 = x8, x4 = x3 . x3 = x16.
Пусть
n = 2e1 + 2e2 +...+ 2er (e1 > e2 >...> er Придумайте алгоритм, который позволял
бы вычислять xn при помощи
b(n) = e1 + умножений, где
Пусть l (n) — наименьшее число умножений,
необходимое для нахождения xn. На примере чисел n = 15 и
n = 63 покажите, что бинарный метод возведения в степень (смотри задачу
5.64) не
всегда оптимален, то есть для некоторых n выполняется
неравенство l (n) < b(n).
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке