ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На сколько частей делят плоскость n прямых общего положения, то есть таких, что никакие две не параллельны и никакие три не проходят через одну точку? а) На параллельных прямых a и b даны точки A и B.
Проведите через данную точку C прямую l, пересекающую прямые a
и b в таких точках A1 и B1, что AA1 = BB1.
Дан треугольник ABC и точки X, Y, не лежащие на его описанной окружности Ω. Пусть A1, B1, C1 – проекции X на BC, CA, AB, а A2, B2, C2 – проекции Y. Докажите, что перпендикуляры, опущенные из A1, B1, C1 на, соответственно, B2C2, C2A2, A2B2, пересекаются в одной точке тогда и только тогда, когда прямая XY проходит через центр Ω. Точки A и B лежат на диаметре данной окружности.
Проведите через них две равные хорды с общим концом.
Сумма двух цифр a и b делится на 7. Докажите, что число aba также делится на 7. а) В треугольнике ABC проведена биссектриса BD внутреннего или внешнего угла. Докажите, что AD : DC = AB : BC. б) Докажите, что центр O вписанной окружности треугольника ABC делит биссектрису AA1 в отношении AO : OA1 = (b + c) : a, где a, b, c – длины сторон треугольника.
Докажите, что для монотонно возрастающей функции f (x)
уравнения x = f (f (x)) и x = f (x) равносильны.
Как и раньше загадывается число от 1 до
200, а загадавший отвечает на вопросы ``да'' или ``
нет''. При этом ровно один раз (за все ответы) он имеет право
соврать. Сколько теперь понадобится вопросов, чтобы отгадать
задуманное число?
В некотором государстве каждый город соединён с каждым дорогой. Сумасшедший король хочет ввести на дорогах одностороннее движение так, чтобы выехав из любого города, в него нельзя было вернуться. Можно ли так сделать? Докажите, что среди чисел [2k На плоскости дано 100 окружностей, составляющих связную (то есть не распадающуюся на части) фигуру.
Алгоритм приближенного вычисления
a0 = a > 0, an + 1 =
Докажите, что
Назовём геометрико-гармоническим средним чисел a и b общий предел последовательностей {an} и {bn}, построенных по правилу a0 = a, b0 = b, an+1 =
Обозначим его через ν(a, b). Докажите, что величина
ν(a, b) связана с μ(a, b) (см. задачу 61322) равенством
ν(a, b)·μ(1/a, 1/b) = 1.
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]
Докажите, что для монотонно возрастающей функции f (x)
уравнения x = f (f (x)) и x = f (x) равносильны.
Пусть a и b – два положительных числа, причём a < b. Построим по этим числам две последовательности {an} и {bn} по правилам: a0 = a, b0 = b, an+1 =
Докажите, что обе эти последовательности имеют один и тот же предел. Этот предел называется арифметико-геометрическим средним чисел a, b и обозначается μ(a, b).
Пусть a и b – два положительных числа, и a < b. Определим две последовательности чисел {an} и {bn} формулами: a0 = a, b0 = b, an+1 = а) Докажите, что обе эти последовательности имеют общий предел. Этот предел называется арифметико-гармоническим средним чисел a и b. б) Докажите, что этот предел совпадает со средним геометрическим чисел a и b. в) Пусть a = 1, b = k. Как последовательность {bn} связана с последовательностью {xn} из задачи 61299?
Назовём геометрико-гармоническим средним чисел a и b общий предел последовательностей {an} и {bn}, построенных по правилу a0 = a, b0 = b, an+1 =
Обозначим его через ν(a, b). Докажите, что величина
ν(a, b) связана с μ(a, b) (см. задачу 61322) равенством
ν(a, b)·μ(1/a, 1/b) = 1.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке