ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Сколько существует шестизначных чисел, в записи которых есть хотя бы одна чётная цифра?

Вниз   Решение


На сферическом Солнце обнаружено конечное число круглых пятен, каждое из которых занимает меньше половины поверхности Солнца. Эти пятна предполагаются замкнутыми (т.е. граница пятна принадлежит ему) и не пересекаются между собой. Доказать, что на Солнце найдутся две диаметрально противоположные точки, не покрытые пятнами.

ВверхВниз   Решение


Глава Монетного двора хочет выпустить монеты 12 номиналов (каждый – в натуральное число рублей) так, чтобы любую сумму от 1 до 6543 рублей можно было заплатить без сдачи, используя не более 8 монет. Сможет ли он это сделать?
(При уплате суммы можно использовать несколько монет одного номинала.)

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 64364  (#11.6)

Тема:   [ Неравенство Коши ]
Сложность: 4-
Классы: 10,11

Автор: Храбров А.

Положительные числа a, b, c и d удовлетворяют условию   2(a + b + c + d) ≥ abcd.   Докажите, что  a² + b² + c² + d² ≥ abcd.

Прислать комментарий     Решение

Задача 64365  (#11.7)

Темы:   [ Взвешивания ]
[ Системы счисления (прочее) ]
Сложность: 4-
Классы: 10,11

Глава Монетного двора хочет выпустить монеты 12 номиналов (каждый – в натуральное число рублей) так, чтобы любую сумму от 1 до 6543 рублей можно было заплатить без сдачи, используя не более 8 монет. Сможет ли он это сделать?
(При уплате суммы можно использовать несколько монет одного номинала.)

Прислать комментарий     Решение

Задача 64366  (#11.8)

Темы:   [ Вписанные и описанные окружности ]
[ Общая касательная к двум окружностям ]
[ Угол между касательной и хордой ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Симметрия помогает решить задачу ]
[ Инверсия помогает решить задачу ]
Сложность: 5-
Классы: 10,11

Автор: Ильясов С.

В треугольник ABC вписана окружность ω с центром в точке I. Около треугольника AIB описана окружность Г. Окружности ω и Г пересекаются в точках X и Y. Общие касательные к окружностям ω и Г пересекаются в точке Z. Докажите, что описанные окружности треугольников ABC и XYZ, касаются.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .