ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На дереве сидело 100 попугайчиков трёх видов: зелёные, жёлтые, пёстрые. Пролетая мимо, Ворона каркнула: "Среди вас зелёных больше чем пёстрых!" – "Да!" – согласилось 50 попугайчиков, а остальные прокричали "Нет!". Обрадовавшись завязавшемуся диалогу, Ворона снова каркнула: "Среди вас пёстрых больше чем жёлтых!" Опять половина попугайчиков закричали "Да!", а остальные – "Нет!". Зелёные попугайчики оба раза сказали правду, жёлтые – оба раза солгали, а каждый из пёстрых один раз солгал, а один раз сказал правду. Могло ли жёлтых попугайчиков быть больше чем зелёных?

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 64819  (#6)

Темы:   [ Математическая логика (прочее) ]
[ Текстовые задачи (прочее) ]
Сложность: 3+
Классы: 7,8,9,10,11

На дереве сидело 100 попугайчиков трёх видов: зелёные, жёлтые, пёстрые. Пролетая мимо, Ворона каркнула: "Среди вас зелёных больше чем пёстрых!" – "Да!" – согласилось 50 попугайчиков, а остальные прокричали "Нет!". Обрадовавшись завязавшемуся диалогу, Ворона снова каркнула: "Среди вас пёстрых больше чем жёлтых!" Опять половина попугайчиков закричали "Да!", а остальные – "Нет!". Зелёные попугайчики оба раза сказали правду, жёлтые – оба раза солгали, а каждый из пёстрых один раз солгал, а один раз сказал правду. Могло ли жёлтых попугайчиков быть больше чем зелёных?

Прислать комментарий     Решение

Задача 64820  (#7)

Темы:   [ Арифметическая прогрессия ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 4-
Классы: 10,11

Имеется бесконечная арифметическая прогрессия натуральных чисел с ненулевой разностью. Из каждого её члена извлекли квадратный корень и, если получилось нецелое число, округлили до ближайшего целого. Может ли быть, что все округления были в одну сторону?

Прислать комментарий     Решение

Задача 64821  (#8)

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Правильная пирамида ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Правильный тетраэдр обладает таким свойством: для каждых двух его вершин найдётся третья вершина, образующая с этими двумя правильный треугольник. Существуют ли другие многогранники, обладающие этим свойством?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .