|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи У равносторонних треугольников $ABC$ и $CDE$ вершина $C$ лежит на отрезке $AE$, вершины $B$ и $D$ по одну сторону от этого отрезка. Описанные около треугольников окружности с центрами $O_1$ и $O_2$ повторно пересекаются в точке $F$. Прямая $O_1O_2$ пересекает $AD$ в точке $K$. Докажите, что $AK=BF$. Незнайка выписал по кругу 11 натуральных чисел. Для каждых двух соседних чисел он посчитал их разность (из большего вычел меньшее). В результате среди найденных разностей оказалось четыре единицы, четыре двойки и три тройки. Докажите, что Незнайка где-то допустил ошибку. Через двор проходят четыре пересекающиеся тропинки (см. план). |
Страница: 1 2 >> [Всего задач: 6]
Через двор проходят четыре пересекающиеся тропинки (см. план).
а) Впишите в каждый кружочек по цифре, отличной от нуля, так, чтобы
сумма цифр в двух верхних кружочках была в 7 раз меньше суммы остальных цифр, а сумма цифр в двух левых кружочках – в 5 раз меньше суммы остальных цифр.
Математик с пятью детьми зашёл в пиццерию.
Разрежьте нарисованный шестиугольник на четыре одинаковые фигуры. Резать можно только по линиям сетки.
Обезьяна становится счастливой, когда съедает три разных фрукта. Какое наибольшее количество обезьян можно осчастливить, имея 20 груш, 30 бананов, 40 персиков и 50 мандаринов?
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|