Страница: 1
2 >> [Всего задач: 7]
Задача
65187
(#1)
|
|
Сложность: 3 Классы: 8,9
|
Внутри параллелограмма ABCD отметили точку E так, что CD = CE.
Докажите, что прямая DE перпендикулярна прямой, проходящей через середины отрезков AE и BC.
Задача
65159
(#2)
|
|
Сложность: 3+ Классы: 8,9
|
Секретная база окружена прозрачным извилистым забором в форме невыпуклого многоугольника, снаружи – болото. Через болото проложена прямая линия электропередач из 36 столбов, часть из которых стоит снаружи базы, а часть – внутри. (Линия электропередач не проходит через вершины забора.) Шпион обходит базу снаружи вдоль забора так, что забор всё время по правую руку от него. Каждый раз, оказавшись на линии электропередач, он считает, сколько всего столбов находится по левую руку от него (он их все видит). К моменту, когда шпион обошёл весь забор, он насчитал в сумме 2015 столбов. Сколько столбов находится внутри базы?
Задача
65160
(#3)
|
|
Сложность: 4- Классы: 8,9,10,11
|
а) Натуральные числа x, x² и x³ начинаются с одной и той же цифры. Обязательно ли эта цифра – единица?
б) Тот же вопрос для натуральных чисел x, x², x³, ..., x2015.
Задача
65161
(#4)
|
|
Сложность: 4- Классы: 8,9,10
|
Каждая сторона некоторого многоугольника обладает таким свойством: на прямой, содержащей эту сторону, лежит ещё хотя бы одна вершина многоугольника. Может ли число вершин этого многоугольника
а) не превосходить девяти;
б) не превосходить восьми?
Задача
65162
(#5)
|
|
Сложность: 4 Классы: 8,9,10,11
|
а) В таблицу 2×n (где n > 2) вписаны числа. Суммы во всех столбцах различны. Докажите, что можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны.
б) В таблицу 10×10 вписаны числа. Суммы во всех столбцах различны. Всегда ли можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны?
Страница: 1
2 >> [Всего задач: 7]