ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Можно ли целые числа от 1 до 2004 расставить в некотором порядке так, чтобы сумма каждых десяти подряд стоящих чисел делилась на 10? |
Страница: 1 [Всего задач: 5]
Можно ли целые числа от 1 до 2004 расставить в некотором порядке так, чтобы сумма каждых десяти подряд стоящих чисел делилась на 10?
В ящике лежат 111 шариков: красные, синие, зелёные и белые. Известно, что если, не заглядывая в ящик, вытащить 100 шариков, то среди них обязательно найдутся четыре шарика различных цветов. Какое наименьшее число шариков нужно вытащить, не заглядывая в ящик, чтобы среди них наверняка нашлись три шарика различных цветов?
Имеется несколько городов, некоторые из них соединены автобусными маршрутами (без остановок в пути). Из каждого города можно проехать в любой другой (возможно, с пересадками). Иванов купил по одному билету на каждый маршрут (то есть может проехать по нему один раз всё равно в какую сторону). Петров купил n билетов на каждый маршрут. Иванов и Петров выехали из города A. Иванов использовал все свои билеты, новых не покупал и оказался в другом городе B. Петров некоторое время ездил по купленным билетам, оказался в городе X и не может из него выехать, не купив новый билет. Докажите, что X – это либо A, либо B
Даны непересекающиеся окружность и прямая. Как с помощью циркуля и линейки построить квадрат, две соседние вершины которого лежат на данной окружности, а две другие вершины – на данной прямой (если известно, что такой квадрат существует)
Сколько существует разных способов разбить число 2004 на натуральные слагаемые, которые приблизительно равны? Слагаемых может быть одно или несколько. Числа называются приблизительно равными, если их разность не больше 1. Способы, отличающиеся только порядком слагаемых, считаются одинаковыми.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке