Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 24 задачи
Версия для печати
Убрать все задачи

Что больше:  1234567·1234569  или  1234568²?

Вниз   Решение


Докажите, что  479 < 2100 + 3100 < 480.

ВверхВниз   Решение


На прямых BC, CA и AB взяты точки A1, B1 и C1, причем точки A1, B1 и C1 лежат на одной прямой. Прямые, симметричные прямым AA1, BB1 и CC1 относительно соответствующих биссектрис треугольника ABC, пересекают прямые BC, CA и AB в точках A2, B2 и C2. Докажите, что точки A2, B2 и C2 лежат на одной прямой.

ВверхВниз   Решение


Существует ли такое натуральное число n, что сумма цифр числа n2 равна 100?

ВверхВниз   Решение


Дано 10 натуральных чисел:  a1 < a2 < a3 < ... < a10.  Доказать, что их наименьшее общее кратное не меньше 10a1.

ВверхВниз   Решение


В тридевятом царстве есть только два вида монет: 16 и 27 тугриков. Можно ли заплатить за одну тетрадку ценой в 1 тугрик и получить сдачу?

ВверхВниз   Решение


Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов?

ВверхВниз   Решение


На стороне BC треугольника ABC взята точка A1 так, что  BA1 : A1C = 2 : 1.  В каком отношении медиана CC1 делит отрезок AA1?

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Докажите, что  A1C·BC = B1C·AC.

ВверхВниз   Решение


Построить треугольник по высоте и медиане, выходящим из одной вершины, и радиусу описанного круга.

ВверхВниз   Решение


Докажите, что при аффинном преобразовании параллельные прямые переходят в параллельные.

ВверхВниз   Решение


В треугольник с основанием a и высотой h вписан квадрат так, что две его вершины лежат на основании треугольника, а две другие – на боковых сторонах.
Найдите сторону квадрата.

ВверхВниз   Решение


Докажите, что растяжение плоскости является аффинным преобразованием.

ВверхВниз   Решение


Пусть число α задаётся десятичной дробью
  а) 0,101001000100001000001...;
  б) 0,123456789101112131415....
Будет ли это число рациональным?

ВверхВниз   Решение


Касательные к описанной окружности неравнобедренного треугольника ABC в точках A, B и C пересекают продолжения сторон в точках A1, B1 и C1. Докажите, что точки A1, B1 и C1 лежат на одной прямой.=-1



ВверхВниз   Решение


Что больше:  10...01/10...01  (в записи числа в числителе – 1984 нуля, в знаменателе – 1985) или  10...01/10...01  (в числителе – 1985 нулей, в знаменателе – 1986).

ВверхВниз   Решение


В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз?

ВверхВниз   Решение


Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что  ∠ABM = ∠CBN.  Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что  AC' = A'C.

ВверхВниз   Решение


На кубе отмечены вершины и центры граней, а также проведены диагонали всех граней. Можно ли по отрезкам этих диагоналей обойти все отмеченные точки, побывав в каждой из них ровно по одному разу?

ВверхВниз   Решение


В пятиугольнике проведены все диагонали. Какие семь углов между двумя диагоналями или между диагоналями и сторонами надо отметить, чтобы из равенства этих углов друг другу следовало, что пятиугольник – правильный?

ВверхВниз   Решение


В произведении семи натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 13 раз?

ВверхВниз   Решение


Докажите, что число  11999 + 21999 + ... + 161999  делится на 17.

ВверхВниз   Решение


Может ли конь пройти с поля a1 на поле h8, побывав по дороге на каждом из остальных полей ровно один раз?

ВверхВниз   Решение


В каждой клетке доски 8×8 написали по одному натуральному числу. Оказалось, что при любом разрезании доски на доминошки суммы чисел во всех доминошках будут разные. Может ли оказаться, что наибольшее записанное на доске число не больше 32?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 65877  (#1)

Темы:   [ Процессы и операции ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

100 ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине некоторым (кому хочет) из остальных. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

Прислать комментарий     Решение

Задача 65871  (#2)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 8,9,10,11

В каждой клетке доски 8×8 написали по одному натуральному числу. Оказалось, что при любом разрезании доски на доминошки суммы чисел во всех доминошках будут разные. Может ли оказаться, что наибольшее записанное на доске число не больше 32?

Прислать комментарий     Решение

Задача 65879  (#3)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Теорема Птолемея ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC.

Прислать комментарий     Решение

Задача 65880  (#4)

Темы:   [ Системы линейных уравнений ]
[ Системы алгебраических нелинейных уравнений ]
[ Системы алгебраических неравенств ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 9,10,11

На 2016 красных и 2016 синих карточках написаны положительные числа, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то 64 чисел, а на карточках другого цвета – попарные произведения тех же 64 чисел. Всегда ли можно определить, на карточках какого цвета написаны попарные суммы?

Прислать комментарий     Решение

Задача 65881  (#5)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
[ Малые шевеления ]
Сложность: 4
Классы: 9,10,11

Можно ли квадрат со стороной 1 разрезать на две части и покрыть ими какой-нибудь круг диаметра больше 1?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .