Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

K членов Жюри Десятой Всероссийской олимпиады школьников по информатике решили отметить столь круглую годовщину в одном из лучших ресторанов на Невском проспекте. На десерт вниманию Жюри предложили торт, имеющий форму прямоугольной призмы с выпуклым N-угольником в основании. Жюри вооружается десертными ножами и собирается справедливо разделить торт на K частей равного объема. Ножами можно проводить прямые вертикальные разрезы от одной границы торта до другой; различные разрезы могут иметь общие точки лишь в своих концевых вершинах.

Напишите программу, помогающую членам Жюри построить требуемые K-1 разрезов.

Входные данные

В первой строке входного файла содержатся два целых числа K и N (1 ≤ K, N ≤ 50). Далее следуют N пар вещественных чисел – координаты
последовательно расположенных вершин N-угольника.

Выходные данные

Каждый из K-1 разрезов в выходном файле должен быть представлен четверкой чисел – координатами своих концов. Все числа должны быть разделены пробелами и/или символами перевода строки.

Пример входного файла

4 3
2 1
0 0.5
4 0.5

Пример выходного файла

2 1 1 0.5
2 1 2 0.5
2 1 3 0.5

Вниз   Решение


В прямоугольнике площадью 5 кв. единиц расположены девять прямоугольников, площадь каждого из которых равна единице. Докажите, что площадь общей части некоторых двух прямоугольников больше или равна 1/9.

ВверхВниз   Решение


На клетчатом листе нарисован прямоугольник 6×7. Разрежьте его по линиям сетки на пять каких-нибудь квадратов.

ВверхВниз   Решение


Автор: Фольклор

Конструктор состоит из плиток размерами 1 × 3 и 1 × 4. Из всех имеющихся плиток Федя сложил два прямоугольника размерами 2 × 6 и 7 × 8. Его брат Антон утащил по одной плитке из каждого сложенного прямоугольника. Сможет ли Федя из оставшихся плиток собрать прямоугольник размером 12 × 5?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 66386  (#6.1)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 4,5,6,7

Каждый день баран учит одинаковое количество языков. К вечеру своего дня рождения он знал 1000 языков. В первый день того же месяца он знал к вечеру 820 языков, а в последний день этого месяца – 1100 языков. Когда у барана день рождения?
Прислать комментарий     Решение


Задача 66387  (#6.2)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 6,7

Автор: Фольклор

Конструктор состоит из плиток размерами 1 × 3 и 1 × 4. Из всех имеющихся плиток Федя сложил два прямоугольника размерами 2 × 6 и 7 × 8. Его брат Антон утащил по одной плитке из каждого сложенного прямоугольника. Сможет ли Федя из оставшихся плиток собрать прямоугольник размером 12 × 5?
Прислать комментарий     Решение


Задача 66388  (#6.3)

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 5,6,7

Трём мудрецам показали 9 карт: шестерку, семерку, восьмерку, девятку, десятку, валета, даму, короля и туза (карты перечислены по возрастанию их достоинства). После этого карты перемешали и каждому раздали по три карты. Каждый мудрец видит только свои карты. Первый сказал: "Моя старшая карта – валет". Тогда второй ответил: "Я знаю, какие карты у каждого из вас". У кого из мудрецов был туз?
Прислать комментарий     Решение


Задача 66389  (#6.4)

Темы:   [ Математическая логика (прочее) ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 5,6,7

Автор: Фольклор

Квадрат 4 × 4 называется магическим, если в его клетках встречаются все числа от 1 до 16, а суммы чисел в столбцах, строках и двух диагоналях равны между собой. Шестиклассник Сеня начал составлять магический квадрат и поставил в какую-то клетку число 1. Его младший брат Лёня решил ему помочь и поставил числа 2 и 3 в клетки, соседние по стороне с числом 1. Сможет ли Сеня после такой помощи составить магический квадрат?
Прислать комментарий     Решение


Задача 66390  (#6.5)

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7

Лист бумаги имеет форму круга. Можно ли провести на нем пять отрезков, каждый из которых соединяет две точки на границе листа так, чтобы среди частей, на которые эти отрезки делят лист, нашлись пятиугольник и два четырехугольника?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .