ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Волченков С.Г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 3 4 5 >> [Всего задач: 21]      



Задача 66390

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7

Лист бумаги имеет форму круга. Можно ли провести на нем пять отрезков, каждый из которых соединяет две точки на границе листа так, чтобы среди частей, на которые эти отрезки делят лист, нашлись пятиугольник и два четырехугольника?
Прислать комментарий     Решение


Задача 109699

Темы:   [ Десятичная система счисления ]
[ Ребусы ]
Сложность: 3
Классы: 7,8,9

В числе A цифры идут в возрастающем порядке (слева направо). Чему равна сумма цифр числа 9· A ?
Прислать комментарий     Решение


Задача 111770

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 8,9,10

В 25 коробках лежат шарики нескольких цветов. Известно, что при любом k  (1 ≤ k ≤ 25)  в любых k коробках лежат шарики ровно  k + 1  различных цветов. Докажите, что шарики одного из цветов лежат во всех коробках.

Прислать комментарий     Решение

Задача 65073

Темы:   [ Теория графов (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

В компании из шести человек любые пять могут сесть за круглый стол так, что каждые два соседа окажутся знакомыми.
Докажите, что и всю компанию можно усадить за круглый стол так, что каждые два соседа окажутся знакомыми.

Прислать комментарий     Решение

Задача 65076

Темы:   [ Средние величины ]
[ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Занумеруем все простые числа в порядке возрастания:  p1 = 2,  p2 = 3,  ... .
Может ли среднее арифметическое     при каком-нибудь  n ≥ 2  быть простым числом?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .