Страница: 1
2 >> [Всего задач: 6]
Задача
66513
(#1)
|
|
Сложность: 3 Классы: 5,6,7
|
Ньют хочет перевезти девять фантастических тварей весом 2, 3, 4, 5, 6, 7, 8, 9 и 10 кг в трёх чемоданах, по три твари в каждом. Каждый чемодан должен весить меньше 20 кг. Если вес какой-нибудь твари будет делиться на вес другой твари из того же чемодана, они подерутся. Как Ньюту распределить тварей по чемоданам, чтобы никто не подрался?
Задача
66514
(#2)
|
|
Сложность: 3 Классы: 5,6,7
|
На завтрак группа из 5 слонов и 7 бегемотов съела 11 круглых и 20 кубических арбузов, а группа из 8 слонов и 4 бегемотов – 20 круглых и 8 кубических арбузов. Все слоны съели поровну (одно и то же целое число) арбузов. И все бегемоты съели поровну арбузов. Но один вид животных ест и круглые, и кубические арбузы, а другой вид привередливый и ест арбузы только одной из форм. Определите, какой вид (слоны или бегемоты) привередлив и какие арбузы он предпочитает.
Задача
66515
(#3)
|
|
Сложность: 3+ |
Два равных треугольника расположены внутри квадрата, как показано на рисунке. Найдите их углы.
Задача
66516
(#4)
|
|
Сложность: 3+ Классы: 6,7,8
|
Имеется три кучки по 40 камней. Петя и Вася ходят по очереди, начинает Петя. За ход надо объединить две кучки, после чего разделить эти камни на четыре кучки. Кто не может сделать ход – проиграл. Кто из играющих (Петя или Вася) может выиграть, как бы ни играл соперник?
Задача
66517
(#5)
|
|
Сложность: 4 Классы: 6,7,8
|
Максим сложил на столе из 9 квадратов и 19 равносторонних треугольников (не накладывая их друг на друга) многоугольник. Мог ли периметр этого многоугольника оказаться равным 15 см, если стороны всех квадратов и треугольников равны 1 см?
Страница: 1
2 >> [Всего задач: 6]