ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Хождение за золотом - 1

Однажды царь решил вознаградить одного из своих мудрецов за хорошую работу.
Он привел его в прямоугольную комнату размром NxM, в каждой клетке
которой лежало несколько килограммов золота. Царь разрешил мудрецу
сделать обойти несколько клеток (переходя с клетки, где сейчас
находится мудрец, в одну из четырех с ней соседних), и собрать все
золото, которое попадется на его пути.

Вам дан маршрут мудреца. Требуется определить, сколько килограммов золота
он собрал.

Входные данные
Во входном файле записано план комнаты. Сначала записано количество
строк N, затем - количество столбцов M (1<=N<=20,1<=M<=20).
Затем записано N строк по M чисел в каждой - количество килограммов
золота, которое лежит в данной клетке (число от 0 до 50).
Далее записано число X - сколько клеток обошел мудрец. Далее
записаны координаты этих клеток (координаты клетки - это два числа:
первое определяет номер строки, второе - номер столбца, верхняя
левая клетка на плане имеет координаты (1,1), правая нижняя - (N,M)).
Гарантируется, что мудрец не проходил по одной и той же клетке дважды.

Выходные данные
В выходной файл выведите количество килограммов золота, которое собрал мудрец.

Пример входного файла
3 4
1 2 3 4
5 6 7 8
9 10 11 12
5
1 1
2 1
2 2
2 3
1 3

Пример выходного файла
22

Вниз   Решение


Максимальная строка

В матрице найти номер строки, сумма чисел в которой максимальна.

Входные данные
Во входном файле записаны числа N и M - количество строк и
столбцов матрицы (каждое из них - из диапазона от 1 до 100),
а затем сама матрица. Элементы матрицы - числа из диапазона integer.

Выходные данные
В выходной файл вывести номер строки,
сумма чисел в которой максимальна. Если таких строк несколько,
вывести последнюю из них.

Пример входного файла
3 2
1 2
3 4
5 6

Пример выходного файла
3

ВверхВниз   Решение


(Сообщил А. Л.Брудно) Прямоугольное поле m×n разбито на mn квадратных клеток. Некоторые клетки покрашены в чёрный цвет. Известно, что все чёрные клетки могут быть разбиты на несколько непересекающихся и не имеющих общих вершин чёрных прямоугольников. Считая, что цвета клеток даны в виде массива типа

array[1..m] of array [ 1..n] of boolean;
подсчитать число чёрных прямоугольников, о которых шла речь. Число действий должно быть порядка mn.

ВверхВниз   Решение


Пусть $E$ – одна из двух точек пересечения окружностей $\omega_1$ и $\omega_2$. Пусть $AB$ – общая внешняя касательная этих окружностей, прямая $CD$ параллельна $AB$, причем точки $A$ и $C$ лежат на $\omega_1$, а точки $B$ и $D$ – на $\omega_2$. Окружности $ABE$ и $CDE$ повторно пересекаются в точке $F$. Докажите, что $F$ делит одну из дуг $CD$ окружности $CDE$ пополам.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 66648

Темы:   [ Общая касательная к двум окружностям ]
[ Вписанные четырехугольники ]
[ Теорема Паскаля ]
Сложность: 4+
Классы: 8,9,10,11

Пусть $E$ – одна из двух точек пересечения окружностей $\omega_1$ и $\omega_2$. Пусть $AB$ – общая внешняя касательная этих окружностей, прямая $CD$ параллельна $AB$, причем точки $A$ и $C$ лежат на $\omega_1$, а точки $B$ и $D$ – на $\omega_2$. Окружности $ABE$ и $CDE$ повторно пересекаются в точке $F$. Докажите, что $F$ делит одну из дуг $CD$ окружности $CDE$ пополам.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .