ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В таблице размерами m×n расставлены числа – в каждой клетке по числу. В каждом столбце подчеркнуто k наибольших чисел (k ≤ m), в каждой строке – l наибольших чисел (l ≤ n). Докажите, что по крайней мере kl чисел подчёркнуты дважды. Решение |
Страница: 1 [Всего задач: 3]
В таблице размерами m×n расставлены числа – в каждой клетке по числу. В каждом столбце подчеркнуто k наибольших чисел (k ≤ m), в каждой строке – l наибольших чисел (l ≤ n). Докажите, что по крайней мере kl чисел подчёркнуты дважды.
Дан многочлен P(x) с целыми коэффициентами, причём для каждого натурального x выполняется неравенство P(x) > x. Определим последовательность {bn} следующим образом: b1 = 1, bk+1 = P(bk) для k ≥ 1. Известно, что для любого натурального d найдется член последовательности {bn}, делящийся на d. Докажите, что P(x) = x + 1.
В волейбольном турнире каждые две команды сыграли по одному матчу.
Страница: 1 [Всего задач: 3] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|