Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Имеется 100-значное число, состоящее из единиц и двоек. Разрешается в любых десяти последовательных цифрах поменять местами первые пять с пятью следующими. Два таких числа называются похожими, если одно из них получается из другого несколькими такими операциями. Какое наибольшее количество попарно непохожих чисел можно выбрать?

Вниз   Решение


Король обошёл шахматную доску, побывав на каждом поле ровно один раз и вернувшись последним ходом на исходное поле. (Король ходит по обычным правилам: за один ход он может перейти по горизонтали, вертикали или диагонали на любое соседнее поле.) Когда нарисовали его путь, последовательно соединив центры полей, которые он проходил, получилась замкнутая ломаная без самопересечений. Какую наименьшую и какую наибольшую длину может она иметь? (Сторона клетки равна единице.)

ВверхВниз   Решение


n человек не знакомы между собой. Нужно так познакомить друг с другом некоторых из них, чтобы ни у каких трёх людей не оказалось одинакового числа знакомых. Докажите, что это можно сделать при любом n.

ВверхВниз   Решение


Автор: Чернов Н.

На плоскости даны две точки A и B. Пусть C – некоторая точка плоскости, равноудалённая от точек A и B. Построим последовательность точек
C1 = C, C2, C3, ...,  где Cn+1 – центр описанной окружности треугольника ABCn. При каком положении точки C
  а) точка Cn попадёт в середину отрезка AB (при этом Cn+1 и дальнейшие члены последовательности не определены)?
  б) точка Cn совпадает с C?

ВверхВниз   Решение


Автор: Белкин А.

В центре квадрата находится полицейский, а в одной из его вершин – гангстер. Полицейский может бегать по всему квадрату, а гангстер – только по его сторонам. Известно, что отношение максимальной скорости полицейского и максимальной скорости гангстера равно:   а) 0,5;   б) 0,49;   в) 0,34;   г) ⅓.   Сможет ли полицейский может бежать так, что в какой-то момент окажется на одной стороне с гангстером?

ВверхВниз   Решение


Автор: Ионин Ю.И.

В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?

ВверхВниз   Решение


Пусть a, b, c, d, l – целые числа. Докажите, что если дробь     сократима на число k, то  ad – bc  делится на k.

ВверхВниз   Решение


В Чили в феврале проходил международный турнир по футболу. Первое место с 8 очками занял местный клуб "Коло-Коло". На очко отстало московское "Динамо" и заняло второе место. Третье место с 4 очками занял бразильский клуб "Коринтианс". Четвёртое место занял югославский клуб "Црвена Звезда", также набравший 4 очка. Доказать, что по этим данным можно точно определить, сколько ещё команд участвовало в турнире и по сколько очков они набрали. (За победу присуждается 2 очка, за ничью – 1, за поражение – 0.)

ВверхВниз   Решение


Двадцать городов соединены 172 авиалиниями.
Доказать, что, используя эти авиалинии, можно из любого города перелететь в любой другой (быть может, делая пересадки).

ВверхВниз   Решение


Последовательность натуральных чисел  a1 < a2 < a3 < ... < an < ...  такова, что каждое натуральное число либо входит в последовательность, либо представимо в виде суммы двух членов последовательности, быть может, одинаковых. Докажите, что  ann²  для любого  n = 1, 2, 3, ...

ВверхВниз   Решение


Диагонали выпуклого четырёхугольника взаимно перпендикулярны. Докажите, что четыре проекции точки пересечения диагоналей на стороны четырёхугольника лежат на одной окружности.

ВверхВниз   Решение


Дан треугольник ABC. Найти геометрическое место таких точек M, что треугольники ABM и BCM – равнобедренные.

ВверхВниз   Решение


Автор: Лысов Ю.П.

На окружности расположено множество F точек, состоящее из 100 дуг. При любом повороте R окружности множество R(F) имеет хотя бы одну общую точку с множеством F. (Другими словами, для любого угла α от 0° до 180° в множестве F можно указать две точки, отстоящие одна от другой на угол α.) Какую наименьшую сумму длин могут иметь 100 дуг, образующих множество F? Каков будет ответ, если дуг не 100, а n?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 73700

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Подсчет двумя способами ]
Сложность: 5
Классы: 8,9,10

Автор: Лысов Ю.П.

На окружности расположено множество F точек, состоящее из 100 дуг. При любом повороте R окружности множество R(F) имеет хотя бы одну общую точку с множеством F. (Другими словами, для любого угла α от 0° до 180° в множестве F можно указать две точки, отстоящие одна от другой на угол α.) Какую наименьшую сумму длин могут иметь 100 дуг, образующих множество F? Каков будет ответ, если дуг не 100, а n?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .