|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дано n чисел, x1, x2, ..., xn, при этом xk = ±1. Доказать, что если x1x2 + x2x3 + ... + xnx1 = 0, то n делится на 4. Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов. Дан отрезок AB. Найдите геометрическое место вершин C остроугольных треугольников ABC. Даны две последовательности x[1]...x[n] и y[1]...y[k] целых чисел. Найти максимальную длину последовательности, являющейся подпоследовательностью обеих последовательностей. Количество операций порядка n . k. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 55]
(а) среднее арифметическое последовательности вещественных чисел; (б) число элементов последовательности целых чисел, равных её максимальному элементу; (в) второй по величине элемент последовательности целых чисел (тот, который будет вторым, если переставить члены в неубывающем порядке); (г) максимальное число идущих подряд одинаковых элементов; (д) максимальная длина монотонного (неубывающего или невозрастающего) участка из идущих подряд элементов в последовательности целых чисел; (е) число групп из единиц, разделённых нулями (в последовательности нулей и единиц).
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 55] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|