Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Если все 6 граней параллелепипеда — равные между собой параллелограммы, то они суть ромбы. Докажите.

Вниз   Решение


К некоторому натуральному числу справа последовательно приписали два двузначных числа. Полученное число оказалось равным кубу суммы трёх исходных чисел. Найдите все возможные тройки исходных чисел.

ВверхВниз   Решение


Известно, что в кодовом замке исправны только кнопки с номерами 1, 2, 3, а код этого замка трёхзначен и не содержит других цифр. Написать последовательность цифр наименьшей длины, наверняка открывающую этот замок (замок открывается, как только подряд и в правильном порядке нажаты все три цифры его кода).

ВверхВниз   Решение


Геологи взяли в экспедицию 80 банок консервов, веса которых все известны и различны (имеется список). Через некоторое время надписи на консервах стали нечитаемыми, и только завхоз знает, где что. Он может это всем доказать (то есть обосновать, что в какой банке находится), не вскрывая консервов и пользуясь только сохранившимся списком и двухчашечными весами со стрелкой, показывающей разницу весов.
Докажите, что для этой цели ему
  а) достаточно четырёх взвешиваний и
  б) недостаточно трёх.

ВверхВниз   Решение


Дана последовательность чисел 1, 2, 3, 5, 8, 13, 21, ..., в которой каждое число, начиная с третьего, равно сумме двух предыдущих. В этой последовательности выбрано восемь чисел подряд. Докажите, что их сумма не равна никакому числу рассматриваемой последовательности.

ВверхВниз   Решение


а) Существуют ли такие натуральные числа a, b, c, что из двух чисел  a/b + b/c + c/a  и  b/a + c/b + a/c  ровно одно – целое?

б) Докажите, что если они оба целые, то  a = b = c.

ВверхВниз   Решение


Проекции плоского выпуклого многоугольника на ось OX, биссектрису 1-го и 3-го координатных углов, ось OY и биссектрису 2-го и 4-го координатных углов соответственно равны 4, 3$ \sqrt{2}$, 5, 4$ \sqrt{2}$. Площадь многоугольника равна S. Доказать, что S$ \ge$10.

ВверхВниз   Решение


С выпуклым четырехугольником ABCD проделывают следующую операцию: одну из данных вершин меняют на точку, симметричную этой вершине относительно серединного перпендикуляра к диагонали (концом которой она не является), обозначив новую точку прежней буквой. Эту операцию последовательно применяют к вершинам A, B, C, D, A, B,... - всего n раз. Назовем четырехугольник допустимым, если его стороны попарно различны и после применения любого числа операций он остается выпуклым. Существует ли:
а) допустимый четырехугольник, который после n<5 операций становится равным исходному;
б) такое число n0, что любой допустимый четырехугольник после n=n0 операций становится равным исходному?

ВверхВниз   Решение


На плоскости даны четыре прямые, из которых никакие две не параллельны, и никакие три не пересекаются в одной точке. По каждой прямой с постоянной скоростью идёт пешеход. Известно, что первый встречается со вторым, с третьим и с четвёртым, а второй встречается с третьим и с четвёртым. Доказать, что третий пешеход встретится с четвёртым.

ВверхВниз   Решение


Докажите тождество

  (ax + by + cz + du)2 + (bx + cy + dz + au)2 + (cx + dy + az + bu)2 +
  + (dx + ay + bz + cu)2 =
  = (dx + cy + bz + au)2 + (cx + by + az + du)2 + (bx + ay + dz + cu)2 +
  + (ax + dy + cz + bu)2.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 77942

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 2+
Классы: 9

Докажите тождество

  (ax + by + cz + du)2 + (bx + cy + dz + au)2 + (cx + dy + az + bu)2 +
  + (dx + ay + bz + cu)2 =
  = (dx + cy + bz + au)2 + (cx + by + az + du)2 + (bx + ay + dz + cu)2 +
  + (ax + dy + cz + bu)2.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .