ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 4]      



Задача 77941  (#1)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Правильный (равносторонний) треугольник ]
[ Вписанный угол, опирающийся на диаметр ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3
Классы: 9

Докажите, что если ортоцентр делит высоты треугольника в одном и том же отношении, то этот треугольник — правильный.
Прислать комментарий     Решение


Задача 77942  (#2)

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 2+
Классы: 9

Докажите тождество

  (ax + by + cz + du)2 + (bx + cy + dz + au)2 + (cx + dy + az + bu)2 +
  + (dx + ay + bz + cu)2 =
  = (dx + cy + bz + au)2 + (cx + by + az + du)2 + (bx + ay + dz + cu)2 +
  + (ax + dy + cz + bu)2.

Прислать комментарий     Решение

Задача 77939  (#3)

Темы:   [ Частные случаи параллелепипедов (прочее) ]
[ Ромбы. Признаки и свойства ]
Сложность: 2+
Классы: 8,9

Если все 6 граней параллелепипеда — равные между собой параллелограммы, то они суть ромбы. Докажите.
Прислать комментарий     Решение


Задача 77943  (#4)

Темы:   [ Задачи на движение ]
[ Малые шевеления ]
Сложность: 4-
Классы: 9

Два человека A и B должны попасть как можно скорее из пункта M в пункт N, расположенный в 15 км от M. Пешком они могут передвигаться со скоростью 6 км/ч. Кроме того, в их распоряжении есть велосипед, на котором можно ехать со скоростью 15 км/ч. A отправляется в путь пешком, а B едет на велосипеде до встречи с пешеходом C, идущим из N и M. Дальше B идёт пешком, а C едет на велосипеде до встречи с A и передаёт ему велосипед, на котором тот и приезжает в N. Когда должен выйти из N пешеход C, чтобы время, затраченное A и B на дорогу в N, было наименьшим? (C идёт пешком с той же скоростью, что A и B; время, затраченное на дорогу, считается от момента выхода A и B из M до момента прибытия последнего из них в N.)
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .