ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Каждая из сторон выпуклого четырехугольника разделена
на пять равных частей и соответствующие точки противоположных сторон
соединены (см. рис.). Докажите, что площадь среднего (заштрихованного)
четырехугольника в 25 раз меньше площади исходного. В каждой клетке доски 5×5 клеток сидит жук.
В некоторый момент все жуки переползают на соседние (по
горизонтали или вертикали) клетки. Обязательно ли при
этом останется пустая клетка?
а) Внутри треугольника ABC расположен отрезок MN.
Докажите, что длина MN не превосходит наибольшей стороны
треугольника.
Продолжения сторон AD и BC выпуклого
четырехугольника ABCD пересекаются в точке O; M
и N — середины сторон AB и CD, P и Q — середины
диагоналей AC и BD. Докажите, что:
α, β и γ - углы треугольника ABC. Докажите, что
В окружность S вписан шестиугольник ABCDEF. Докажите, что точки пересечения прямых AB и DE, BC и EF, CD и FA лежат на одной прямой. В прямоугольном треугольнике $ABC$ ($\angle C=90^{\circ}$) вписанная окружность касается катета $BC$ в точке $K$. Докажите, что хорда вписанной окружности, высекаемая прямой $AK$ в два раза больше, чем расстояние от вершины $C$ до этой прямой. Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7. |
Страница: 1 [Всего задач: 1]
Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7.
Страница: 1 [Всего задач: 1]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке