ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В прямоугольной таблице, составленной из положительных чисел, произведение суммы чисел любого столбца на сумму чисел любой строки равно числу, стоящему на их пересечении. Доказать, что сумма всех чисел в таблице равна единице.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78093  (#1)

Тема:   [ Трапеции (прочее) ]
Сложность: 2+
Классы: 8,9

Найти все равнобочные трапеции, которые разбиваются диагональю на два равнобедренных треугольника.
Прислать комментарий     Решение


Задача 78094  (#2)

Темы:   [ Целочисленные и целозначные многочлены ]
[ Свойства коэффициентов многочлена ]
[ Делимость чисел. Общие свойства ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9

Известно, что  ax³ + bx² + cx + d,  где a, b, c, d – данные целые числа, при любом целом x делится на 5. Доказать, что все числа a, b, c, d делятся на 5.

Прислать комментарий     Решение

Задача 30310  (#3)

Темы:   [ Четность и нечетность ]
[ Целочисленные решетки ]
Сложность: 3+
Классы: 6,7,8

Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.
Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.

Прислать комментарий     Решение

Задача 78096  (#4)

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 8,9

В прямоугольной таблице, составленной из положительных чисел, произведение суммы чисел любого столбца на сумму чисел любой строки равно числу, стоящему на их пересечении. Доказать, что сумма всех чисел в таблице равна единице.

Прислать комментарий     Решение

Задача 78097  (#5)

Темы:   [ Десятичная система счисления ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9

От A до B  999 км. Вдоль дороги стоят километровые столбы, на которых написаны расстояния до A и до B, , ..., .
Сколько среди них таких, на которых имеются только две различные цифры?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .