ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Доказать, что число всех цифр в последовательности 1, 2, 3,..., 10k равно числу всех нулей в последовательности 1, 2, 3,..., 10k + 1. |
Страница: 1 [Всего задач: 5]
Дан четырёхугольник ABCD. Вписать в него прямоугольник с заданными направлениями сторон.
Найти все действительные решения системы
Точка G — центр шара, вписанного в правильный тетраэдр ABCD. Прямая OG, соединяющая G с точкой O, лежащей внутри тетраэдра, пересекает плоскости граней в точках A', B', C', D'. Доказать, что
Доказать, что число всех цифр в последовательности 1, 2, 3,..., 10k равно числу всех нулей в последовательности 1, 2, 3,..., 10k + 1.
Дано n целых чисел a1 = 1, a2, a3, ..., an, причём ai ≤ ai+1 ≤ 2ai (i = 1, 2,..., n – 1) и сумма всех чисел чётна. Можно ли эти числа разбить на две группы так, чтобы суммы чисел в этих группах были равны?
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке