ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В десятичной записи целого числа A все цифры, кроме первой и последней, нули, первая и последняя – не нули, число цифр – не меньше трёх.
Доказать, что A не является точным квадратом.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78217  (#1)

Темы:   [ ГМТ в пространстве (прочее) ]
[ Выпуклые многоугольники ]
[ Скрещивающиеся прямые и ГМТ ]
Сложность: 5
Классы: 10,11

Два правильных равных треугольника расположены в пространстве в параллельных плоскостях P1 и P2, причём отрезок, соединяющий их центры, перпендикулярен плоскостям. Найти геометрическое место точек, являющихся серединами отрезков, соединяющих точки одного треугольника с точками другого треугольника.
Прислать комментарий     Решение


Задача 78218  (#2)

Темы:   [ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10

a, b и n – натуральные числа, и n нечётно. Докажите, что если числитель и знаменатель дроби     делятся на n, то и сама дробь делится на n.

Прислать комментарий     Решение

Задача 108132  (#3)

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - окружность или дуга окружности ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Автор: Фольклор

Дана окружность и точка A внутри неё.
Найдите геометрическое место вершин C всевозможных прямоугольников ABCD, где точки B и D лежат на окружности.

Прислать комментарий     Решение

Задача 78219  (#4)

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 9,10,11

В десятичной записи целого числа A все цифры, кроме первой и последней, нули, первая и последняя – не нули, число цифр – не меньше трёх.
Доказать, что A не является точным квадратом.

Прислать комментарий     Решение

Задача 78220  (#5)

Тема:   [ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 11

Даны числа $ \alpha_{1}$,$ \alpha_{2}$,...,$ \alpha_{k}$, причём для всех натуральных нечётных n имеет место равенство

$\displaystyle \alpha_{1}^{n}$ + $\displaystyle \alpha_{2}^{n}$ + ... + $\displaystyle \alpha_{k}^{n}$ = 0.

Доказать, что те из чисел $ \alpha_{1}$,$ \alpha_{2}$,...,$ \alpha_{k}$, которые не равны нулю, можно разбить на пары таким образом, чтобы два числа, входящие в одну и ту же пару, были бы равны по абсолютной величине, но противоположны по знаку.
Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .