ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сеть метро имеет на каждой линии не менее 4 станций, из них не более трёх пересадочных. Ни на какой пересадочной станции не скрещиваются более двух линий. Какое наибольшее число линий может иметь такая сеть, если с каждой станции на любую другую можно попасть, сделав не больше двух пересадок?

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 15]      



Задача 78592

Тема:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3+
Классы: 9,10,11

Какое максимальное число дамок можно поставить на чёрных полях шахматной доски размером 8×8 так, чтобы каждую дамку била хотя бы одна из остальных?

Прислать комментарий     Решение

Задача 78590

Тема:   [ Многоугольники (неравенства) ]
Сложность: 3+
Классы: 9,10,11

Внутри окружности расположен выпуклый пятиугольник (вершины могут лежать как внутри, так и на окружности). Доказать, что хотя бы одна из его сторон не больше стороны правильного пятиугольника, вписанного в эту окружность.
Прислать комментарий     Решение


Задача 78589

Тема:   [ Ограниченность, монотонность ]
Сложность: 4-
Классы: 9,10,11

При каком значении K величина Ak = $ {\dfrac{19^k+66^k}{k!}}$ максимальна?
Прислать комментарий     Решение


Задача 78591

Темы:   [ Арифметическая прогрессия ]
[ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
[ Китайская теорема об остатках ]
Сложность: 4-
Классы: 8,9,10

Доказать, что те натуральные K, для которых  KK + 1  делится на 30, образуют арифметическую прогрессию. Найти её.

Прислать комментарий     Решение

Задача 78596

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Классическая комбинаторика (прочее) ]
[ Теория графов (прочее) ]
Сложность: 4
Классы: 8,9

Сеть метро имеет на каждой линии не менее 4 станций, из них не более трёх пересадочных. Ни на какой пересадочной станции не скрещиваются более двух линий. Какое наибольшее число линий может иметь такая сеть, если с каждой станции на любую другую можно попасть, сделав не больше двух пересадок?

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .