Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Пусть     где  p1, ..., ps – простые и  α1, ..., αs, β1, ..., βs ≥ 0.  Докажите равенства:

  а)  

  б)  

  в)  (a, b)[a, b] = ab.

Вниз   Решение


На сколько нулей оканчивается число 100!?

ВверхВниз   Решение


Докажите, что число    делится на 2k и не делится на 2k+1.

ВверхВниз   Решение


Найдите все двузначные числа, квадрат которых равен кубу суммы их цифр.

ВверхВниз   Решение


Автор: Белухов Н.

Дан треугольник ABC и такая точка F, что  ∠AFB = ∠BFC = ∠CFA.  Прямая, проходящая через F и перпендикулярная BC, пересекает медиану, проведённую из вершины A, в точке A1. Точки B1 и C1 определяются аналогично. Докажите, что A1, B1 и C1 являются тремя вершинами правильного шестиугольника, три другие вершины которого лежат на сторонах треугольника ABC.

ВверхВниз   Решение


Дано число 100...01; число нулей в нём равно 1961. Докажите, что это число – составное.

ВверхВниз   Решение


Остров Толпыго имеет форму многоугольника. На нём расположено несколько стран, каждая из которых имеет форму треугольника, причём каждые две граничащие страны имеют целую общую сторону (т.е. вершина одного треугольника не лежит на стороне другого). Доказать, что карту этого острова можно так раскрасить тремя красками, чтобы каждая страна была закрашена одним цветом и любые две соседние страны были закрашениы в разные цвета.

ВверхВниз   Решение


Внутри квадрата A1A2A3A4 лежит выпуклый четырёхугольник A5A6A7A8. Внутри A5A6A7A8 выбрана точка A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что из этих девяти точек можно выбрать 5 точек, расположенных в вершинах выпуклого пятиугольника.

ВверхВниз   Решение


Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 78692

Темы:   [ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
[ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 7,8,9

Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .