ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что можно расставить в вершинах правильного n-угольника действительные числа x1, x2, ..., xn, все отличные от 0, так, чтобы для любого правильного k-угольника, все вершины которого являются вершинами исходного n-угольника, сумма чисел, стоящих в его вершинах, равнялась 0.

   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 78789  (#2)

Темы:   [ Десятичная система счисления ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 9,10

Дано 29-значное число  X = a1...a29  (0 ≤ ak ≤ 9,  a1 ≠ 0).  Известно, что для всякого k цифра ak встречается в записи данного числа a30–k раз (например, если  a10 = 7,  то цифра a20 встречается семь раз). Найти сумму цифр числа X.

Прислать комментарий     Решение

Задача 78796  (#3)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Простые числа и их свойства ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 5-
Классы: 8,9,10

Можно ли каждую сторону квадрата так разделить на 100 частей, чтобы из полученных 400 отрезков нельзя было бы составить контура никакого прямоугольника, отличного от исходного квадрата?

Прислать комментарий     Решение

Задача 78798  (#5)

Темы:   [ Правильные многоугольники ]
[ Вспомогательные проекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10

Доказать, что можно расставить в вершинах правильного n-угольника действительные числа x1, x2, ..., xn, все отличные от 0, так, чтобы для любого правильного k-угольника, все вершины которого являются вершинами исходного n-угольника, сумма чисел, стоящих в его вершинах, равнялась 0.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .