ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

За круглым столом сидят n человек. Разрешается любых двух людей, сидящих рядом, поменять местами. Какое наименьшее число таких перестановок необходимо сделать, чтобы в результате каждые два соседа остались бы соседями, но сидели бы в обратном порядке?

   Решение

Задачи

Страница: 1 [Всего задач: 2]      



Задача 97865  (#М952)

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 9,10,11

Автор: Варге И.

а) Привести пример такого положительного a, что  {a} + {1/a} = 1.
б) Может ли такое a быть рациональным числом?

Прислать комментарий     Решение

Задача 79405  (#М955)

Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Примеры и контрпримеры. Конструкции ]
[ Процессы и операции ]
[ Теория графов (прочее) ]
Сложность: 5
Классы: 9,10,11

За круглым столом сидят n человек. Разрешается любых двух людей, сидящих рядом, поменять местами. Какое наименьшее число таких перестановок необходимо сделать, чтобы в результате каждые два соседа остались бы соседями, но сидели бы в обратном порядке?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .