Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

16 карточек с целыми числами от 1 до 16 разложены лицевой стороной вниз в виде таблицы 4×4 так, что карточки, на которых записаны соседние числа, лежат рядом (соприкасаются по стороне). Какое наименьшее число карточек нужно одновременно перевернуть, чтобы наверняка определить местоположение всех чисел (как бы ни были разложены карточки)?

Вниз   Решение


Докажите неравенства:
  а)  x4 + y4 + z4x²yz + xy²z + xyz²;
  б)  x³ + y³ + z³ ≥ 3xyz;
  в)  x4 + y4 + z4 + t4 ≥ 4xyzt;
  г)   x5 + y5x³y² + x²y³.
Значения переменных считаются положительными.

ВверхВниз   Решение


Доказать, что при любой расстановке знаков "+" и "−" у нечётных степеней x выполнено неравенство
x2n ± x2n–1 + x2n–2 ± x2n–3 + ... + x4 ± x³ + x² ± x + 1 > ½  (x – произвольное действительное число, а n – натуральное).

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 79435

Темы:   [ Алгебраические неравенства (прочее) ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 10

Доказать, что при любой расстановке знаков "+" и "−" у нечётных степеней x выполнено неравенство
x2n ± x2n–1 + x2n–2 ± x2n–3 + ... + x4 ± x³ + x² ± x + 1 > ½  (x – произвольное действительное число, а n – натуральное).

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .