ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что при любой расстановке знаков "+" и "−" у нечётных степеней x выполнено неравенство
x2n ± x2n–1 + x2n–2 ± x2n–3 + ... + x4 ± x³ + x² ± x + 1 > ½  (x – произвольное действительное число, а n – натуральное).

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 79435

Темы:   [ Алгебраические неравенства (прочее) ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 10

Доказать, что при любой расстановке знаков "+" и "−" у нечётных степеней x выполнено неравенство
x2n ± x2n–1 + x2n–2 ± x2n–3 + ... + x4 ± x³ + x² ± x + 1 > ½  (x – произвольное действительное число, а n – натуральное).

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .