Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Даны два многочлена от переменной x с целыми коэффициентами. Произведение их есть многочлен от переменной x с чётными коэффициентами, не все из которых делятся на 4. Доказать, что в одном из многочленов все коэффициенты чётные, а в другом – хоть один нечётный.

Вниз   Решение


На каждой клетке шахматной доски стоит шашка, с одной стороны белая, с другой черная. За один ход можно выбрать любую шашку и перевернуть все шашки, стоящие с выбранной на одной вертикали, и все шашки, стоящие с ней на одной горизонтали.
  а) Придумайте, как перевернуть ровно одну шашку на доске 6×6, произвольно уставленной шашками.
  б) Можно ли добиться того, чтобы все шашки на доске 5×6 стали белыми, если чёрными изначально была ровно половина шашек.

ВверхВниз   Решение


Постройте квадрат, три вершины которого лежат на трёх данных параллельных прямых.

ВверхВниз   Решение


Существует ли правильный треугольник с вершинами в узлах целочисленной решетки?

ВверхВниз   Решение


На окружности фиксированы точки A и B, а точка C движется по этой окружности. Найдите геометрическое место точек пересечения медиан треугольников ABC.

ВверхВниз   Решение


Постройте четырехугольник ABCD по четырем сторонам и углу между AB и CD.

ВверхВниз   Решение


Дан треугольник ABC. Найдите на прямой AB точку M, для которой сумма радиусов описанных окружностей треугольников ACM и BCM была бы наименьшей.

ВверхВниз   Решение


Старинный замок был обнесён треугольной стеной. Каждая сторона стены была поделена на три равные части, и в этих точках, а также в вершинах были построены башни. Всего вдоль стены было 9 башен: A, E, F, B, K, L, C, M, N. Со временем все стены и башни, кроме башен E, K, M, разрушились. Как по оставшимся башням определить, где находились башни A, B, C, если известно, что башни A, B, C стояли в вершинах?

ВверхВниз   Решение


Требуется заполнить числами квадратную таблицу из n×n клеток так, чтобы сумма чисел на каждой из  4n – 2  диагоналей равнялась 1. Можно ли это сделать при
  а)  n = 55?
  б)  n = 1992?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 79623

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
[ Подсчет двумя способами ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 11

Требуется заполнить числами квадратную таблицу из n×n клеток так, чтобы сумма чисел на каждой из  4n – 2  диагоналей равнялась 1. Можно ли это сделать при
  а)  n = 55?
  б)  n = 1992?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .