Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Пусть AHa и BHb – высоты, а ALa и BLb – биссектрисы треугольника ABC. Известно, что  HaHb || LaLb.  Верно ли, что  AC = BC?

Вниз   Решение


Докажите, что равенство   =   равносильно тому, что десятичное представление дроби 1/m имеет вид  0,(a1a2...an).

ВверхВниз   Решение


Из пункта A в другие можно попасть двумя способами: 1) выйти сразу и идти пешком; 2) вызвать машину и, подождав ее определённое время, ехать на ней. В каждом случае используется способ передвижения, требующий меньшего времени. При этом

Скорости пешехода и машины, а также время ожидания машины, принимаются неизменными. Сколько понадобится времени для достижения пункта, отстоящего от A на 6 км?

ВверхВниз   Решение


Даны две треугольные пирамиды ABCD и A'BCD с общим основанием BCD, причем точка A' лежит внутри пирамиды ABCD. Доказать, что сумма плоских углов при вершине A' пирамиды A'BCD больше суммы плоских углов при вершине A пирамиды ABCD.

ВверхВниз   Решение


Кащей Бессмертный загадывает три натуральных числа: a, b, c. Иван Царевич должен назвать ему три числа: XYZ, после чего Кащей сообщает ему сумму aX + bY + cZ, затем Иван Царевич говорит еще один набор чисел xyz и Кащей сообщает ему сумму ax + by + cz. Царевич должен отгадать задуманные числа, иначе ему отрубят голову. Какие числа он должен загадать, чтобы остаться в живых?

ВверхВниз   Решение


По заданной последовательности положительных чисел  q1,..., qn, ...  строится последовательность многочленов следующим образом:
    f0(x) = 1,
    f1(x) = x,
      ...
    fn+1(x) = (1 + qn)xfn(x) – qnfn–1(x).
Докажите, что все вещественные корни n-го многочлена заключены между –1 и 1.

ВверхВниз   Решение


Найдите     если   .

ВверхВниз   Решение


Коля и Витя играют в следующую игру. На столе лежит куча из 31 камня. Мальчики делают ходы поочерёдно, а начинает Коля. Делая ход, играющий делит каждую кучку, в которой больше одного камня, на две меньшие кучки. Выигрывает тот, кто после своего хода оставляет кучки по одному камню в каждой. Сможет ли Коля сделать так, чтобы выиграть при любой игре Вити?

ВверхВниз   Решение


Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 87981

Тема:   [ Десятичная система счисления ]
Сложность: 2-
Классы: 5,6,7

Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .