ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Из цифр 1 и 2 составили пять n-значных чисел так, что у каждых двух чисел совпали цифры ровно в m разрядах, но ни в одном разряде не совпали все пять чисел. Докажите, что отношение m/n не меньше ⅖ и не больше ⅗. Доктор Айболит хочет навестить и корову, и волчицу, и жучка, и червячка. Все четверо живут вдоль одной прямой дороги. Орлы готовы утром доставить Айболита к первому пациенту, а вечером забрать от последнего, но три промежуточных перехода ему придётся сделать пешком. Если Айболит начнёт с коровы, то длина его кратчайшего маршрута составит 6 км, если с волчицы — 7 км, а если с жучка — 8 км. Нарисуйте, как могли располагаться домики коровы, волчицы, жучка и червячка (достаточно одного примера расположения). Биссектриса AD, медиана BM и высота CH остроугольного треугольника ABC пересекаются в одной точке. Докажите, что величина угла BAC Известно, что если у правильного $N$-угольника, находящегося внутри окружности, продлить все стороны до пересечения с этой окружностью, то $2N$ добавленных к сторонам отрезков можно разбить на две группы с одинаковой суммой длин. А верно ли аналогичное утверждение для находящегося внутри сферы а) произвольного куба; б) произвольного правильного тетраэдра? (Каждое ребро продлевают в обе стороны до пересечения со сферой. В итоге к каждому ребру добавляется по отрезку с обеих сторон. Требуется покрасить каждый из них либо в красный, либо в синий цвет, чтобы сумма длин красных отрезков была равна сумме длин синих.) Пусть $AA_1$, $BB_1$, $CC_1$ – высоты треугольника $ABC$; $A_0$, $C_0$ – точки пересечения описанной окружности треугольника $A_1BC_1$ с прямыми $A_1B_1$ и $C_1B_1$ соответственно. Докажите, что прямые $AA_0$ и $CC_0$ пересекаются на медиане треугольника $ABC$ или параллельны ей. Незнайка решал уравнение, в левой части которого стоял многочлен третьей степени с целыми коэффициентами, а в правой – 0. Он нашёл корень 1/7. Знайка, заглянув к нему в тетрадь, увидел только первые два слагаемых многочлена: 19x³ + 98x² и сразу сказал, что ответ неверен. Обоснуйте ответ Знайки. Даны две монеты радиуса 1 см, две монеты радиуса 2 см и две монеты радиуса 3 см. Можно положить две из них на стол так, чтобы они касались друг друга, и добавлять монеты по одной так, чтобы очередная касалась хотя бы двух уже лежащих. Новую монету нельзя класть на старую. Можно ли положить несколько монет так, чтобы центры каких-то трёх монет оказались на одной прямой? Запишите несколько раз подряд число 2013 так, чтобы получившееся число делилось на 9. Изменятся ли частное и остаток, если делимое и делитель увеличить в 3 раза? |
Страница: 1 2 >> [Всего задач: 7]
Петя и Миша играют в такую игру. Петя берёт в каждую руку по монетке: в одну – 10 коп., а в другую – 15. После этого содержимое левой руки он умножает на 4, 10, 12 или 26, а содержимое правой руки – на 7, 13, 21 или 35. Затем Петя складывает два получившихся произведения и называет Мише результат. Может ли Миша, зная этот результат, определить, в какой руке у Пети – правой или левой – монета достоинством в 10 коп.?
Отметьте на плоскости 6 точек так, чтобы от каждой на расстоянии 1 находилось ровно три точки.
48 кузнецов должны подковать 60 лошадей. Какое наименьшее время они затратят на работу, если каждый кузнец тратит на одну подкову 5 минут?
Разрежьте квадрат на 3 части, из которых можно сложить треугольник с 3 острыми углами и тремя различными сторонами.
Изменятся ли частное и остаток, если делимое и делитель увеличить в 3 раза?
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке