Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Из цифр 1 и 2 составили пять n-значных чисел так, что у каждых двух чисел совпали цифры ровно в m разрядах, но ни в одном разряде не совпали все пять чисел. Докажите, что отношение m/n не меньше ⅖ и не больше ⅗.

Вниз   Решение


Доктор Айболит хочет навестить и корову, и волчицу, и жучка, и червячка. Все четверо живут вдоль одной прямой дороги. Орлы готовы утром доставить Айболита к первому пациенту, а вечером забрать от последнего, но три промежуточных перехода ему придётся сделать пешком. Если Айболит начнёт с коровы, то длина его кратчайшего маршрута составит 6 км, если с волчицы — 7 км, а если с жучка — 8 км.

Нарисуйте, как могли располагаться домики коровы, волчицы, жучка и червячка (достаточно одного примера расположения).

ВверхВниз   Решение


Биссектриса AD, медиана BM и высота CH остроугольного треугольника ABC пересекаются в одной точке. Докажите, что величина угла BAC больше 45°.

ВверхВниз   Решение


Известно, что если у правильного $N$-угольника, находящегося внутри окружности, продлить все стороны до пересечения с этой окружностью, то $2N$ добавленных к сторонам отрезков можно разбить на две группы с одинаковой суммой длин.

А верно ли аналогичное утверждение для находящегося внутри сферы

а) произвольного куба;

б) произвольного правильного тетраэдра?

(Каждое ребро продлевают в обе стороны до пересечения со сферой. В итоге к каждому ребру добавляется по отрезку с обеих сторон. Требуется покрасить каждый из них либо в красный, либо в синий цвет, чтобы сумма длин красных отрезков была равна сумме длин синих.)

ВверхВниз   Решение


Пусть $AA_1$, $BB_1$, $CC_1$ – высоты треугольника $ABC$; $A_0$, $C_0$ – точки пересечения описанной окружности треугольника $A_1BC_1$ с прямыми $A_1B_1$ и $C_1B_1$ соответственно. Докажите, что прямые $AA_0$ и $CC_0$ пересекаются на медиане треугольника $ABC$ или параллельны ей.

ВверхВниз   Решение


Незнайка решал уравнение, в левой части которого стоял многочлен третьей степени с целыми коэффициентами, а в правой – 0. Он нашёл корень 1/7. Знайка, заглянув к нему в тетрадь, увидел только первые два слагаемых многочлена:  19x³ + 98x²  и сразу сказал, что ответ неверен. Обоснуйте ответ Знайки.

ВверхВниз   Решение


Даны две монеты радиуса 1 см, две монеты радиуса 2 см и две монеты радиуса 3 см. Можно положить две из них на стол так, чтобы они касались друг друга, и добавлять монеты по одной так, чтобы очередная касалась хотя бы двух уже лежащих. Новую монету нельзя класть на старую. Можно ли положить несколько монет так, чтобы центры каких-то трёх монет оказались на одной прямой?

ВверхВниз   Решение


Запишите несколько раз подряд число 2013 так, чтобы получившееся число делилось на 9.

ВверхВниз   Решение


Изменятся ли частное и остаток, если делимое и делитель увеличить в 3 раза?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 102964  (#1.1)

Темы:   [ Теория игр (прочее) ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 5,6,7

Петя и Миша играют в такую игру. Петя берёт в каждую руку по монетке: в одну – 10 коп., а в другую – 15. После этого содержимое левой руки он умножает на 4, 10, 12 или 26, а содержимое правой руки – на 7, 13, 21 или 35. Затем Петя складывает два получившихся произведения и называет Мише результат. Может ли Миша, зная этот результат, определить, в какой руке у Пети – правой или левой – монета достоинством в 10 коп.?

Прислать комментарий     Решение

Задача 103733  (#1.2)

Темы:   [ Системы точек ]
[ Правильный (равносторонний) треугольник ]
[ Перенос помогает решить задачу ]
Сложность: 3-
Классы: 5,6,7,8

Отметьте на плоскости 6 точек так, чтобы от каждой на расстоянии 1 находилось ровно три точки.

Прислать комментарий     Решение


Задача 102802  (#1.3)

Темы:   [ Задачи на работу ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 3-
Классы: 7,8

48 кузнецов должны подковать 60 лошадей. Какое наименьшее время они затратят на работу, если каждый кузнец тратит на одну подкову 5 минут?

Прислать комментарий     Решение

Задача 76039  (#1.4)

Темы:   [ Разные задачи на разрезания ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2
Классы: 6,7

Разрежьте квадрат на 3 части, из которых можно сложить треугольник с 3 острыми углами и тремя различными сторонами.
Прислать комментарий     Решение


Задача 88246  (#1.5)

Тема:   [ Деление с остатком ]
Сложность: 2-
Классы: 5,6,7

Изменятся ли частное и остаток, если делимое и делитель увеличить в 3 раза?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .