|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи У Винтика и у Шпунтика есть по три палочки суммарной длины 1 метр у каждого. И Винтик, и Шпунтик могут сложить из трёх своих палочек треугольник. Ночью в их дом прокрался Незнайка, взял по одной палочке у Винтика и у Шпунтика и поменял их местами. Наутро оказалось, что Винтик не может сложить из своих палочек треугольник. Можно ли гарантировать, что Шпунтик из своих — сможет? Заменим в произведении 100· 101·102·...·200 все числа на 150. Увеличится или уменьшится произведение? Тот же вопрос для суммы. |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 202]
Доказать, что число 29 + 299 делится на 100.
Доказать, что для любого натурального n число 62(n+1) − 2n+3·3n + 2 + 36 делится на 900.
У продавца имеются чашечные весы с неравными плечами и гири. Сначала он взвешивает товар на одной чашке, затем – на другой и берёт средний вес. Не обманывает ли он?
Заменим в произведении 100· 101·102·...·200 все числа на 150. Увеличится или уменьшится произведение? Тот же вопрос для суммы.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 202] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|