ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Начнём считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвёртый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т. д. Какой палец будет по счету 2004-м? Медиану AA0 треугольника ABC отложили от точки A0 перпендикулярно стороне BC во внешнюю сторону треугольника. Обозначим второй конец построенного отрезка через A1. Аналогично строятся точки B1 и C1. Найдите углы треугольника A1B1C1, если углы треугольника ABC равны 30°, 30° и 120°. Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите все такие значения α, не превосходящие 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник. В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов. Докажите, что если натуральное число N представляется в виде суммы трёх квадратов целых чисел, делящихся на 3, то оно также представляется в виде суммы трёх квадратов целых чисел, не делящихся на 3.
При каких натуральных n для любых чисел α , β , γ ,
являющихся величинами углов остроугольного треугольника, справедливо неравенство
В стране несколько городов, некоторые пары городов соединены двусторонними беспосадочными авиалиниями, принадлежащими k авиакомпаниям. Известно, что каждые две линии одной авиакомпании имеют общий конец. Докажите, что все города можно разбить на k + 2 группы так, что никакие два города из одной группы не соединены авиалинией. а) Пусть
Подруги. Три подруги были на выпускном балу в белом, красном и голубом платье. Их туфли были тех же трёх цветов. Только у Тамары цвета платья и туфель совпадали. Валя была в белых туфлях. Ни платье, ни туфли Лиды не были красными. Определите цвета платьев и туфель у подруг. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 202]
Решить уравнение x8 + 4x4 + x² + 1 = 0.
Подруги. Три подруги были на выпускном балу в белом, красном и голубом платье. Их туфли были тех же трёх цветов. Только у Тамары цвета платья и туфель совпадали. Валя была в белых туфлях. Ни платье, ни туфли Лиды не были красными. Определите цвета платьев и туфель у подруг.
Замените буквы в слове ТРАНСПОРТИРОВКА цифрами (разным буквам соответствуют разные цифры, а одинаковым одинаковые) так, чтобы выполнялось неравенство Т > Р > А > Н < С < П < О < Р < Т > И > Р > О < В < К < А.
Ребус-система. Расшифруйте числовой ребус — систему
Числа по кругу. Расставьте по кругу числа 14, 27, 36, 57, 178, 467, 590, 2345 так, чтобы любые два соседних числа имели общую цифру.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 202]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке