|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||
|
Версия для печати
Убрать все задачи Двое играют в следующую игру. Один называет цифру, а другой вставляет её по своему усмотрению вместо одной из звёздочек в следующей разности: **** – ****. Затем первый называет ещё одну цифру, второй ставит её, первый опять называет цифру, и так играют до тех пор, когда все звёздочки будут заменены цифрами. Первый стремится к тому, чтобы разность получилась как можно больше, а а) второй может расставлять цифры так, чтобы полученная разность стала не больше 4000, независимо от того, какие цифры называл первый; б) первый может называть цифры так, чтобы разность стала не меньше 4000, независимо от того, куда расставляет цифры второй. Существует ли такой многочлен P(x), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (P(x))n, n > 1, положительны? Через n!! обозначается произведение n(n – 2)(n – 4)... до единицы (или до двойки): например, 8!! = 8·6·4·2; 9!! = 9·7·5·3·1.
|
Страница: 1 [Всего задач: 1]
Через n!! обозначается произведение n(n – 2)(n – 4)... до единицы (или до двойки): например, 8!! = 8·6·4·2; 9!! = 9·7·5·3·1.
Страница: 1 [Всего задач: 1] |
|||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|