ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Ионин Ю.И.

Двое играют в следующую игру. Один называет цифру, а другой вставляет её по своему усмотрению вместо одной из звёздочек в следующей разности:

********.

Затем первый называет ещё одну цифру, второй ставит её, первый опять называет цифру, и так играют до тех пор, когда все звёздочки будут заменены цифрами. Первый стремится к тому, чтобы разность получилась как можно больше, а второй — чтобы она стала как можно меньше. Докажите, что

а) второй может расставлять цифры так, чтобы полученная разность стала не больше 4000, независимо от того, какие цифры называл первый;

б) первый может называть цифры так, чтобы разность стала не меньше 4000, независимо от того, куда расставляет цифры второй.

Вниз   Решение


Существует ли такой многочлен P(x), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (P(x))n,  n > 1,  положительны?

ВверхВниз   Решение


Через n!! обозначается произведение  n(n – 2)(n – 4)...  до единицы (или до двойки): например,  8!! = 8·6·4·2;  9!! = 9·7·5·3·1.
Докажите, что  1985!! + 1986!!  делится на 1987.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 97917

Темы:   [ Произведения и факториалы ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9

Через n!! обозначается произведение  n(n – 2)(n – 4)...  до единицы (или до двойки): например,  8!! = 8·6·4·2;  9!! = 9·7·5·3·1.
Докажите, что  1985!! + 1986!!  делится на 1987.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .