|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Имеются чашечные весы и 100 монет, среди которых несколько (больше 0, но меньше 99) фальшивых. Все фальшивые монеты весят одинаково, все настоящие тоже весят одинаково, при этом фальшивая монета легче настоящей. Можно делать взвешивание на весах, заплатив перед взвешиванием одну из монет (неважно, фальшивую или настоящую). Докажите, что можно с гарантией обнаружить настоящую монету. Миша загадал число не меньше 1 и не больше 1000. Васе разрешено задавать только такие вопросы, на которые Миша может ответить «да» или «нет» (Миша всегда говорит правду). Может ли Вася за 10 вопросов определить загаданное число? Существуют ли три взаимно простых в совокупности натуральных числа, квадрат каждого из которых делится на сумму двух оставшихся? Существует ли такое натуральное число M, что никакое натуральное число, десятичная запись которого состоит лишь из нулей и не более чем 1988 единиц, не делится на M? |
Страница: << 1 2 [Всего задач: 6]
Существует ли такое натуральное число M, что никакое натуральное число, десятичная запись которого состоит лишь из нулей и не более чем 1988 единиц, не делится на M?
Страница: << 1 2 [Всего задач: 6] |
|||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|