Страница: 1
2 3 4 5 6 7 >> [Всего задач: 39]
|
|
Сложность: 2 Классы: 6,7,8
|
Известно, что доля блондинов среди голубоглазых больше чем доля блондинов
среди всех людей.
Что больше: доля голубоглазых среди блондинов или доля голубоглазых среди всех людей?
|
|
Сложность: 2+ Классы: 7,8,9
|
Докажите, что из любых семи натуральных чисел (не обязательно идущих подряд)
можно выбрать три числа, сумма которых делится на 3.
|
|
Сложность: 2+ Классы: 7,8,9,10
|
Каждую грань кубика разбили на четыре равных квадрата и раскрасили эти
квадраты в три цвета так, чтобы квадраты, имеющие общую сторону, были покрашены
в разные цвета. Докажите, что в каждый цвет покрашено по 8 квадратиков.
|
|
Сложность: 2+ Классы: 8,9,10
|
Доказать, что в вершинах многогранника можно расставить натуральные числа
так, что в каждых двух вершинах, соединённых ребром, стоят числа не взаимно простые, а в каждых двух вершинах, не соединённых ребром, взаимно простые.
Примечание: простых чисел бесконечно много.
|
|
Сложность: 3- Классы: 7,8,9
|
Положительные числа a, b, c таковы, что a ≥ b ≥ c и a + b + c ≤ 1. Докажите, что a² + 3b² + 5c² ≤ 1.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 39]