ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что уравнение x² + y² – z² = 1997 имеет бесконечно много решений в целых числах. Решение |
Страница: 1 [Всего задач: 4]
По неподвижному эскалатору человек спускается быстрее, чем поднимается. Что быстрее: спуститься и подняться по поднимающемуся эскалатору или спуститься и подняться по спускающемуся эскалатору? (Предполагается, что все скорости, о которых идет речь, постоянны, причём скорости эскалатора при движении вверх и вниз одинаковы, а скорость человека относительно эскалатора всегда больше скорости эскалатора.)
Докажите, что уравнение x² + y² – z² = 1997 имеет бесконечно много решений в целых числах.
В квадрате ABCD точки K и M принадлежат сторонам BC и CD соответственно, причём AM – биссектриса угла KAD.
а) Каким наименьшим числом прямых можно разрезать все клетки доски 3×3? (Чтобы клетка была разрезана, прямая должна проходить через внутреннюю точку этой клетки.)
Страница: 1 [Всего задач: 4] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|