Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 559]      



Задача 30711  (#025)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9

Докажите, что из n предметов чётное число предметов можно выбрать 2n–1 способами.

Прислать комментарий     Решение

Задача 30712  (#026)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9

Докажите, что  

Прислать комментарий     Решение

Задача 30713  (#027)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Целочисленные решетки (прочее) ]
Сложность: 3+
Классы: 8,9

Докажите, что каждое число a в треугольнике Паскаля равно
  а) сумме чисел предыдущей правой диагонали, начиная с самого левого вплоть до стоящего справа над числом a.
  б) сумме чисел предыдущей левой диагонали, начиная с самого правого вплоть до стоящего слева над числом a.

Прислать комментарий     Решение

Задача 30713  (#028)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Целочисленные решетки (прочее) ]
Сложность: 3+
Классы: 8,9

Докажите, что каждое число a в треугольнике Паскаля равно
  а) сумме чисел предыдущей правой диагонали, начиная с самого левого вплоть до стоящего справа над числом a.
  б) сумме чисел предыдущей левой диагонали, начиная с самого правого вплоть до стоящего слева над числом a.

Прислать комментарий     Решение

Задача 30715  (#029)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Целочисленные решетки (прочее) ]
Сложность: 4-
Классы: 8,9

Докажите, что каждое число a в треугольнике Паскаля, уменьшенное на 1, равно сумме всех чисел, заполняющих параллелограмм, ограниченный теми правой и левой диагоналями, на пересечении которых стоит число a (сами эти диагонали в рассматриваемый параллелограмм не включаются).

Прислать комментарий     Решение

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .