|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Среди 18 деталей, выставленных в ряд, какие-то три подряд стоящие весят по 99 г, а все остальные – по 100 г. Двумя взвешиваниями на весах со стрелкой определите все 99-граммовые детали. 3 равные окружности с центрами O1, O2, O3 пересекаются в данной точке. A1, A2, A3 — остальные точки пересечения. Доказать, что треугольники O1O2O3 и A1A2A3 равны. Страна называется пятёрочной, если в ней каждый город соединён авиалиниями ровно с пятью другими городами (международных рейсов нет). |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 559]
Можно ли выписать в ряд по одному разу цифры от 1 до 9 так, чтобы между единицей и двойкой, двойкой и тройкой, ..., восьмёркой и девяткой было нечётное число цифр?
а) В Стране Чудес есть три города A, B и C. Из города A в город B ведет 6 дорог, а из города B в город C – 4 дороги.
Назовём натуральное число "симпатичным", если в его записи встречаются только нечётные цифры.
Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 559] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|