ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 83]      



Задача 30864  (#021)

Тема:   [ Неравенство Коши ]
Сложность: 2+
Классы: 7,8

Докажите, что     при x, y > 0.

Прислать комментарий     Решение

Задача 30865  (#022)

Темы:   [ Неравенство Коши ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 2+
Классы: 8,9,10

Докажите, что  x² + y² + z² ≥ xy + yz + zx  при любых x, y, z.

Прислать комментарий     Решение

Задача 30866  (#023)

Темы:   [ Неравенство Коши ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9

a, b, c ≥ 0.  Докажите, что  (a + b)(a + c)(b + c) ≥ 8abc.

Прислать комментарий     Решение

Задача 30867  (#024)

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 9

a, b, c ≥ 0.  Докажите, что   .

Прислать комментарий     Решение

Задача 30868  (#025)

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 8,9

Докажите, что  x² + y² + 1 ≥ xy + x + y  при любых x и y.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .