ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 112]      



Задача 60355  (#02.021)

Тема:   [ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 7,8

Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?

Прислать комментарий     Решение

Задача 60356  (#02.022)

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2+
Классы: 6,7,8

Сто человек сидят за круглым столом, причем более половины из них — мужчины. Докажите, что какие-то двое из мужчин сидят друг напротив друга.

Прислать комментарий     Решение

Задача 21997  (#02.023)

Темы:   [ Принцип Дирихле (прочее) ]
[ Комбинаторика (прочее) ]
Сложность: 3
Классы: 6,7,8

На складе имеется по 200 сапог 41, 42 и 43 размеров, причём среди этих 600 сапог 300 левых и 300 правых.
Докажите, что из них можно составить не менее 100 годных пар обуви.

Прислать комментарий     Решение

Задача 21978  (#02.024)

Темы:   [ Принцип Дирихле (прочее) ]
[ Турниры и турнирные таблицы ]
Сложность: 3
Классы: 6,7,8

Несколько футбольных команд проводят турнир в один круг.
Докажите, что в любой момент турнира найдутся две команды, сыгравшие к этому моменту одинаковое число матчей.

Прислать комментарий     Решение

Задача 60359  (#02.025)

Темы:   [ Принцип Дирихле (прочее) ]
[ Десятичная система счисления ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 9,10,11

Дано 51 различных двузначных чисел (однозначные числа считаем двузначными с первой цифрой 0). Докажите, что из них можно выбрать 6 таких чисел, что никакие 2 из них не имеют одинаковых цифр ни в одном разряде.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 112]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .