ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Касательные к описанной окружности неравнобедренного треугольника ABC в точках A, B и C пересекают продолжения сторон в точках A1, B1 и C1. Докажите, что точки A1, B1 и C1 лежат на одной прямой.=-1



Вниз   Решение


Окружность S касается окружностей S1 и S2 в точках A1 и A2.
Докажите, что прямая A1A2 проходит через точку пересечения общих внешних или общих внутренних касательных к окружностям S1 и S2.

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC (или на их продолжениях) взяты точки A1, B1 и C1 соответственно. Докажите, что точки A1, B1 и C1 лежат на одной прямой тогда и только тогда, когда

$\displaystyle {\frac{\overline{BA_1}}{\overline{CA_1}}}$ . $\displaystyle {\frac{\overline{CB_1}}{\overline{AB_1}}}$ . $\displaystyle {\frac{\overline{AC_1}}{\overline{BC_1}}}$ = 1        (теорема Менелая).


Вверх   Решение

Задачи

Страница: << 1 2 3 4 [Всего задач: 16]      



Задача 56913

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 6
Классы: 9

Диагонали AD, BE и CF шестиугольника ABCDEF пересекаются в одной точке. Пусть A' — точка пересечения прямых AC и FB, B' — точка пересечения BD и AC, C' — точка пересечения CE и BD. Докажите, что точки пересечения прямых A'B' и D'E', B'C' и E'F', C'D' и F'A' лежат на одной прямой.
Прислать комментарий     Решение


Страница: << 1 2 3 4 [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .