ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На сторонах единичного квадрата отметили точки K, L, M и N так, что прямая KM параллельна двум сторонам квадрата, а прямая LN – двум другим сторонам квадрата. Отрезок KL отсекает от квадрата треугольник периметра 1. Треугольник какой площади отсекает от квадрата отрезок MN?

Вниз   Решение


Замените $\ast$ одинаковыми числами так, чтобы равенство стало верным: $$\frac{20}{\ast} - \frac{\ast}{15} = \frac{20}{15}$$

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 57863

Тема:   [ Осевая и скользящая симметрии (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что окружность при осевой симметрии переходит в окружность.
Прислать комментарий     Решение


Задача 57864

Тема:   [ Осевая и скользящая симметрии (прочее) ]
Сложность: 2-
Классы: 9

Четырехугольник имеет ось симметрии. Докажите, что этот четырехугольник либо является равнобедренной трапецией, либо симметричен относительно диагонали.
Прислать комментарий     Решение


Задача 57865

Тема:   [ Осевая и скользящая симметрии (прочее) ]
Сложность: 2-
Классы: 9

Ось симметрии многоугольника пересекает его стороны в точках A и B. Докажите, что точка A является либо вершиной многоугольника, либо серединой стороны, перпендикулярной оси симметрии.
Прислать комментарий     Решение


Задача 57866

Тема:   [ Осевая и скользящая симметрии (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что если фигура имеет две перпендикулярные оси симметрии, то она имеет центр симметрии.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .